Toward a very low-power integrated charge preamplifier by using III-V field effect transistors

The future high-energy physics experiments, based on the new high-luminosity accelerators, will require a new generation of front-end monolithic electronics characterized, in particular, by high speed and low-power dissipation. In this perspective, the performances of Si and GaAs field effect transistors (FET's) are compared here in conditions of low-power dissipation. The advantages of solutions based on GaAs FET's, in applications requiring fast shaping times, are presented and experimental results are reported. The criteria for the optimum choice of the input transistor dimension and of its bias point are discussed.

[1]  W. A. Rowe,et al.  A fast shaping low power amplifier-comparator integrated circuit for silicon strip detectors , 1995 .

[2]  Federico Faccio,et al.  NOISE AND SPEED CHARACTERISTICS OF TEST TRANSISTORS AND CHARGE AMPLIFIERS DESIGNED USING A SUBMICRON CMOS TECHNOLOGY , 1996 .

[3]  Antonio Francesco Longoni,et al.  "Trapping noise in semiconductor devices: A method for determining the noise spectrum as a function of the trap position". , 1995 .

[5]  G. Pierschel,et al.  Radiation and cryogenic test results with a monolithic GaAs preamplifier in C-HFET technology , 1994 .

[6]  F. Krummenacher,et al.  An Experimental 10 MHz Low-Power CMOS Analog Front-End for Pixel Detectors , 1990 .

[7]  Eric A. Vittoz,et al.  Tradeoffs in low-power CMOS analog circuits for pixel detectors , 1989 .

[8]  K. Lübelsmeyer,et al.  DC and noise performance of C-HFET transistors at low drain current densities , 1996 .

[9]  V. Speziali,et al.  Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[10]  P. F. Manfredi,et al.  Processing the signals from solid-state detectors in elementary-particle physics , 1986 .

[11]  M. Krammer Semiconductor tracking detectors in e+e− vertex detectors , 1996 .

[12]  Willy Sansen,et al.  Effect of noise on the resolution of CMOS analog readout systems for microstrip and pixel detectors , 1991 .

[13]  P. Aspell,et al.  CMOS low noise monolithic frontends for Si strip detector readout , 1992 .

[14]  O. Dvornikov,et al.  Multichannel monolithic front-end system design Part I. Peculiarities of the monolithic transistor application in head stages. Construction and operation mode optimization , 1996 .

[15]  Francesco Svelto,et al.  JFET monolithic preamplifier with outstanding noise behaviour and radiation hardness characteristics , 1993 .

[16]  Ionizing Radiation Hardness of GaAs Technologies , 1987, IEEE Transactions on Nuclear Science.

[17]  Wladyslaw Dabrowski,et al.  Fast bipolar front-end for binary readout of silicon strip detectors , 1994 .

[18]  K. Kandiah,et al.  Random telegraph signal currents and low-frequency noise in junction field effect transistors , 1994 .

[19]  E. Nygård,et al.  Radiation hard electronics for LHC , 1995 .

[20]  G. Cesura,et al.  Effects of /spl gamma/-rays and neutrons on the noise behaviour of monolithic JFET circuits , 1994 .

[21]  Marco Sampietro,et al.  Suboptimal filtering of 1/ƒ-noise in detector charge measurements , 1990 .

[22]  P.C. Chao,et al.  Experimental comparisons in the electrical performance of long and ultrashort gate length GaAs MESFET's , 1982, IEEE Electron Device Letters.

[23]  G. Pierschel,et al.  Characteristics of GaAs complementary heterojunction FETs (C-HFETs) and C-HFET based amplifiers exposed to high neutron fluences , 1997 .

[24]  C.T.M. Chang,et al.  A subthreshold current model for GaAs MESFET's , 1987, IEEE Electron Device Letters.