Vapor explosions in light water reactors: A review of theory and modeling

Abstract A vapor explosion is a physical event in which a hot liquid (fuel) rapidly fragments and transfers its internal energy to a colder, more volatile liquid (coolant); in so doing, the coolant vaporizes at high pressures and expands, doing work on its sorroundings. In present day fission reactors, if complete and prolonged failure of normal and emergency coolant flow occurs, fission product decay heat would cause melting of the reactor materials. In postulated severe accident analyses vapor explosions are considered if this molten “fuel” contacts residual water in-vessel or ex-vessel, because these physical explosions have the potential of contributing to reactor vessel failure and possibly containment failure and release of radioactive fission products. Vapor explosions are also a real concern in industrial processes where a hot fluid can contact a colder volatile fluid, e.g., foundries for aluminum and steel, paper pulping mills, LNG operations. The vapor explosion is commonly divided into four phases of heat transfer: (1) quiescent mixing of fuel and coolant, (2) triggering of the explosion, (3) explosion escalation and propagation, and (4) expansion and work production. This work provides a comprehensive review of vapor explosion theory and modeling in these four areas. Current theories and modeling have led to a better understanding of the overall process, although some specific fundamental issues are either not well understood or require experimental verification of theoretical hypotheses. These key issues include the extent of fuel-coolant mixing under various contact modes, the basic fuel fragmentation mechanism, and the effect of scale on the mixing process coupled to the explosion propagation and efficiency. Current reactor safety concerns with the vapor explosion are reviewed in light of these theories and models.

[1]  N. Bohr Über die Anwendung der Quantentheorie auf den Atombau , 1923 .

[2]  William J. Hogan,et al.  Effects of large-scale LNG/water RPT explosions , 1984 .

[3]  A. W. Cronenberg,et al.  Film Boiling and Vapor Explosion Phenomena , 1980 .

[4]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[5]  D. Chapman,et al.  VI. On the rate of explosion in gases , 1899 .

[6]  R. W. Hall,et al.  The propagation of large scale thermal explosions , 1979 .

[7]  H. Fauske Mechanism of uranium dioxide--sodium explosive interactions , 1973 .

[8]  H. M. Ruppel,et al.  Propagation of a liquid-liquid explosion , 1981 .

[9]  D. V. Swenson,et al.  An analysis of containment failure by a steam explosion following a postulated core meltdown in a light water reactor , 1981 .

[10]  Wiktor Z̀yszkowski On the transplosion phenomenon and the leidenfrost temperature for the molten copper-water thermal interaction , 1976 .

[11]  R. Ladisch Comment on fragmentation of UO2 by thermal stress and pressurization , 1977 .

[12]  G. Wallis One Dimensional Two-Phase Flow , 1969 .

[13]  L. C. Witte,et al.  EXPLOSIVE INTERACTION OF MOLTEN METALS INJECTED INTO WATER. , 1972 .

[14]  S. J. Board,et al.  Fragmentation in thermal explosions , 1974 .

[15]  T. G. Theofanous,et al.  An assessment of Class-9 (core-melt) accidents for PWR dry-containment systems☆ , 1981 .

[16]  H. Mösinger Numerical experiment on shock wave induced drop fragmentation , 1980 .

[17]  M. Corradini,et al.  Recent film boiling calculations: implication on fuel-coolant interactions , 1986 .

[18]  A. W. Cronenberg,et al.  Vapor explosion phenomena with respect to nuclear reactor safety assessment , 1980 .

[19]  R. D. Mikesell,et al.  BUBBLE GROWTH RATES IN HIGHLY SUBCOOLED NUCLEATE BOILING , 1959 .

[20]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[21]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  M. Pilch Acceleration induced fragmentation of liquid drops , 1981 .

[23]  S. J. Board,et al.  Analysis of metal--water explosions , 1973 .

[24]  J. Hinze,et al.  Critical speeds and sizes of liquid globules , 1949 .

[25]  Larry C. Witte,et al.  Heat Transfer and Fragmentation During Molten-Metal/Water Interactions , 1973 .

[26]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[27]  D. Armstrong,et al.  Explosive Interaction of Molten UO2 and Liquid Sodium , 1976 .

[28]  A. W. Cronenberg,et al.  UO2 solidification phenomena associated with rapid cooling in liquid sodium , 1974 .

[29]  D. Burgess,et al.  HAZARDS OF SPILLAGE OF LNG INTO WATER , 1972 .

[30]  S. J. Board,et al.  Detonation of fuel coolant explosions , 1975, Nature.

[31]  L. Caldarola A theoretical model with variable masses for the molten fuel-sodium thermal interaction in a nuclear fast reactor☆ , 1975 .

[32]  A. M. Judd CALCULATION OF THE THERMODYNAMIC EFFICIENCY OF MOLTEN-FUEL-COOLANT INTERACTIONS. , 1970 .

[33]  Milton Blander,et al.  Limits of superheat and explosive boiling of light hydrocarbons, halocarbons, and hydrocarbon mixtures , 1975 .

[34]  D. W. Condiff Contributions concerning quasi-steady propagation of thermal detonations through dispersions of hot liquid fuel in cooler volatile liquid coolants , 1982 .

[35]  D. J. Buchanan,et al.  Self-triggering of small-scale fuel-coolant interactions: I. Experiments , 1976 .

[36]  A. Yayanos Equation of State for P‐V Isotherms of Water and NaCl Solutions , 1970 .

[37]  S. Bankoff,et al.  On the existence of steady supercritical plane thermal detonations , 1981 .

[38]  R. B. Duffey,et al.  An experimental study of energy transfer processes relevant to thermal explosions , 1971 .

[39]  S. Colgate,et al.  Dynamic Mixing of Water and Lava , 1973, Nature.

[40]  R. E. Henry,et al.  Required initial conditions for energetic steam explosions , 1981 .

[41]  Ulrich Grigull,et al.  Heat Transfer in Boiling , 1977 .

[42]  J. Hinze Forced deformations of viscous liquid globules , 1949 .

[43]  Fred Cooper,et al.  The Role of Rayleigh-Taylor Instabilities in Fuel-Coolant Interactions , 1978 .

[44]  D. B. Spalding,et al.  A general purpose computer program for multi-dimensional one- and two-phase flow , 1981 .

[45]  L. S. Nelson Explosion of Burning Zirconium Droplets Caused by Nitrogen , 1965, Science.

[46]  F. Walford Transient heat transfer from a hot nickel sphere moving through water , 1969 .

[47]  M. S. Plesset,et al.  On the Stability of Fluid Flows with Spherical Symmetry , 1954 .

[48]  A. S. Kalelkar,et al.  Prediction of Hazards of Spills of Anhydrous Ammonia on Water , 1974 .

[49]  D. J. Buchanan A model for fuel-coolant interactions , 1974 .

[50]  L Caldarola,et al.  A theoretical model for the molten fuel-sodium interaction in a nuclear fast reactor , 1972 .

[51]  E. L. Bales,et al.  Water-drop response to sudden accelerations , 1972, Journal of Fluid Mechanics.

[52]  B. Chalmers,et al.  KINETICS OF SOLIDIFICATION , 1956 .

[53]  D. J. Buchanan Penetration of a solid layer by a liquid jet , 1973 .

[54]  T. G. McRae,et al.  Analysis of Burro series 40-m3 lng spill experiments , 1982 .

[55]  A. Jr. Padilla TRANSIENT ANALYSIS OF FUEL-SODIUM INTERACTION. , 1970 .

[56]  Trond Arnold Bjørnard An experimental investigation of acoustic cavitation as a fragmentation mechanism of molten tin droplets in water. , 1976 .

[57]  M. L. Corradini,et al.  Limits to Fuel/Coolant Mixing , 1985 .

[58]  N. A. Halliwell,et al.  Thermal interaction experiments with UO2 and sodium using pyrotechnic heating , 1975 .

[59]  Larry C. Witte,et al.  Pressurization of a Solidifying Sphere , 1972 .

[60]  G. Fröhlich,et al.  Experiments with Water and Hot Melts of Lead , 1976 .

[61]  J. Neuman,et al.  Theory of Detonation Waves , 1942 .

[62]  M. L. Corradini,et al.  Phenomenological Modeling of the Triggering Phase of Small-Scale Steam Explosion Experiments , 1981 .

[63]  M. G. Zabetakis,et al.  HAZARDS OF LNG SPILLAGE IN MARINE TRANSPORTATION , 1970 .

[64]  R. Apfel A Novel Technique for Measuring the Strength of Liquids , 1971 .

[65]  Milton S. Plesset,et al.  Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary , 1971, Journal of Fluid Mechanics.

[66]  N. Todreas,et al.  Thermal stress initiated fracture as a fragmentation mechanism in the UO2-sodium fuel-coolant interaction , 1975 .

[67]  W. Z̀yszkowski Thermal interaction of molten copper with water , 1975 .

[68]  C. W. Hirt,et al.  SALE: a simplified ALE computer program for fluid flow at all speeds , 1980 .

[69]  A. W. Cronenberg,et al.  Solidification phenomena for UO2, UC, and UN relative to quenching in sodium coolant , 1976 .

[70]  R. W. Wright,et al.  PRESSURE GENERATION BY MOLTEN FUEL-COOLANT INTERACTIONS UNDER LMFBR ACCIDENT CONDITIONS. , 1971 .

[71]  M. Corradini,et al.  Prediction of minimum UO2 particle size based on thermal stress initiated fracture model , 1979 .

[72]  L. Bova,et al.  EXPERIMENTAL INVESTIGATION OF VAPOR EXPLOSIONS IN A MOLTEN SALT--WATER SYSTEM. , 1971 .

[73]  Larry C. Witte,et al.  Vapor explosion: heat transfer and fragmentation. VI. Transient film and transition boiling from a sphere , 1971 .

[74]  A. W. Cronenberg,et al.  A thermal stress mechanism for the fragmentation of molten UO2 upon contact with sodium coolant , 1974 .

[75]  R. Mesler,et al.  MOLTEN METAL-WATER EXPLOSIONS. , 1969 .

[76]  L. Witte,et al.  Destabilization of vapor film boiling around spheres , 1973 .

[77]  S. H. Han,et al.  An unsteady one-dimensional two-fluid model for fuel-coolant mixing in an LWR meltdown accident , 1986 .

[78]  D.H. Cho,et al.  RATE-LIMITED MODEL OF MOLTEN FUEL/COOLANT INTERACTIONS: MODEL DEVELOPMENT AND PRELIMINARY CALCULATIONS. , 1970 .

[79]  Russell B. Mesler,et al.  Metal-Water Explosions , 1968 .

[80]  H. W. Emmons,et al.  Taylor instability of finite surface waves , 1960, Journal of Fluid Mechanics.

[81]  Louis Bernath,et al.  Theory of Bubble Formation in Liquids. , 1952 .