PolSAR image classification via multimodal sparse representation-based feature fusion

ABSTRACT It is well known that various features extraction approaches are utilized in polarimetric synthetic aperture (PolSAR) terrain classification for representing the data characteristic. It needs relevant and effective feature fusion algorithms to process complicated features. To address this issue, this article presents a multimodal sparse representation (MSR) framework based algorithm to fuse the different feature vectors from the complicated data space. Polarimetric data features, decomposition features, and the texture features from Pauli colour-coded image are selected to represent multimodal data in different observation modes. The corresponding multimodal manifold regularizations are added to MSR framework to approximate the data structure. Considering the independence and correlation of features, the intrinsic affinity matrices are calculated from this framework. They are processed via local preserve projection algorithm to project the multimodal features into a low dimensionally intrinsic feature space for subsequent classification. Three datasets are utilized in experiments, Western Xi’an, Flevoland, and San Francisco Bay datasets from the Radarsat-2 system in C-band. The effect of regularization parameters and different dimensional fused features are analysed in visualization and quantitation performance. The experiment results demonstrate that the effectiveness and validity of proposed method are superior to other state-of-art methods.

[1]  Xia Li,et al.  A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data , 2012 .

[2]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[3]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Laurent Ferro-Famil,et al.  A general model-based polarimetric decomposition scheme for vegetated areas. , 2009 .

[5]  Biao Hou,et al.  Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Hong Sun,et al.  Laplacian Eigenmaps-Based Polarimetric Dimensionality Reduction for SAR Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[7]  S. Cloude Target decomposition theorems in radar scattering , 1985 .

[8]  Jin Zhao,et al.  Unsupervised Classification of Polarimetirc SAR Image Via Improved Manifold Regularized Low-Rank Representation With Multiple Features , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Na Wang,et al.  SAR Target Recognition via Joint Sparse Representation of Monogenic Signal , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  Lamei Zhang,et al.  Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features , 2010, EURASIP J. Adv. Signal Process..

[11]  Liangpei Zhang,et al.  On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  David A. Clausi,et al.  Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery , 2001 .

[13]  Pascale C. Dubois,et al.  Corrections to "Measuring Soil Moisture with Imaging Radars" , 1995, IEEE Trans. Geosci. Remote. Sens..

[14]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Lenan Wu,et al.  A New Classifier for Polarimetric SAR Images , 2009 .

[16]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  S. Cloude Uniqueness of Target Decomposition Theorems in Radar Polarimetry , 1992 .

[18]  Rabab Kreidieh Ward,et al.  Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[20]  Thomas S. Huang,et al.  Multi-observation visual recognition via joint dynamic sparse representation , 2011, 2011 International Conference on Computer Vision.

[21]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[22]  Andrew J. Bennett,et al.  Use of high-resolution polarimetric SAR for automatic target recognition , 2002, SPIE Defense + Commercial Sensing.

[23]  Pascal Frossard,et al.  Clustering on Multi-Layer Graphs via Subspace Analysis on Grassmann Manifolds , 2013, IEEE Transactions on Signal Processing.

[24]  Rabab Kreidieh Ward,et al.  Segmentation of polarimetric SAR data using contour information via spectral graph partitioning , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[25]  Lei Shi,et al.  Supervised Graph Embedding for Polarimetric SAR Image Classification , 2013, IEEE Geoscience and Remote Sensing Letters.

[26]  Stephen L. Durden,et al.  Three-component scattering model to describe polarimetric SAR data , 1993, Optics & Photonics.

[27]  Thomas L. Ainsworth,et al.  Polarimetric SAR image classification-exploiting optimal variables derived from multiple-image datasets , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[28]  Bo Du,et al.  Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding , 2015, Pattern Recognit..

[29]  Donald A. Adjeroh,et al.  Efficient texture analysis of SAR imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Zheng Bao,et al.  Optimizing the data-dependent kernel under a unified kernel optimization framework , 2008, Pattern Recognit..

[31]  Sassan Saatchi,et al.  The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest , 2000, IEEE Trans. Geosci. Remote. Sens..

[32]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[33]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[35]  Victor S. Frost,et al.  Textural Features for Radar Image Analysis , 1981, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Bo Zhang,et al.  A PolSAR ship detector based on a multi-polarimetric-feature combination using visual attention , 2014 .

[37]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[38]  Rob J. Dekker,et al.  Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands , 2003, IEEE Trans. Geosci. Remote. Sens..

[39]  Rama Chellappa,et al.  Joint Sparse Representation for Robust Multimodal Biometrics Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Xin Niu,et al.  Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach , 2013 .

[41]  Trac D. Tran,et al.  Robust multi-sensor classification via joint sparse representation , 2011, 14th International Conference on Information Fusion.

[42]  Wenxian Yu,et al.  Superpixel-Based Classification With an Adaptive Number of Classes for Polarimetric SAR Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[44]  Serkan Kiranyaz,et al.  Integrating Color Features in Polarimetric SAR Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[45]  David A. Clausi,et al.  Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty , 2012, IEEE Transactions on Geoscience and Remote Sensing.