The Gestalt heuristic : learning the right level of abstraction to better search the optima

Nowadays, engineering process often requires the optimization of a cost: improving energetic yield, minimizing the used space, reducing the development effort, . . . Not surprisingly, research in optimization is one of the most active field of computer science. Metaheuristics are among the state-of-the-art techniques for combinatorial optimization problem. In this context, the paper addresses the following question: “Considering computation time and implementation ease constraints, is it then possible to build a system increasing the efficiency of the used metaheuristic by automatically altering the problem representation during the optimization process?”. Inspiring by the Gestalt psychology, a descriptive theory of complex cognitive processes such as vision, the paper suggests the Gestalt heuristic as a valid solution. The heuristic mechanism mainly consists in building a meta-model, an abstraction of the problem. This meta-model is used as a filter or a lens inserted between the metaheuristic and the problem representation. From an engineering point of view, the Gestalt heuristic is a promising additional mechanism for rapid prototyping and anytime optimization context. After introducing a formal and unified framework for Gestalt heuristic, the paper gives an illustrated guideline for the implementation of this new heuristic. The suggested implementation is then experimentally tested and discussed.

[1]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[2]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[3]  G. Rota The Number of Partitions of a Set , 1964 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[6]  M. Land Visual Perception: Physiology, Psychology and Ecology, Vicki Bruce, Patrick Green. Lawrence Erlbaum, London (1985), xiii, +369. Price £8.95 (paperback) , 1986 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[9]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[10]  Emanuel Falkenauer,et al.  A New Representation and Operators for Genetic Algorithms Applied to Grouping Problems , 1994, Evolutionary Computation.

[11]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[12]  Patrick D. Surry,et al.  Fitness Variance of Formae and Performance Prediction , 1994, FOGA.

[13]  Terry Jones,et al.  A Description of Holland's Royal Road Function , 1994, Evolutionary Computation.

[14]  M. Ash,et al.  Gestalt Psychology in German Culture, 1890–1967: Holism and the Quest for Objectivity. , 1995 .

[15]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[16]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[17]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[18]  Jordan B. Pollack,et al.  Modeling Building-Block Interdependency , 1998, PPSN.

[19]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[20]  Tim Walters,et al.  Repair and Brood Selection in the Traveling Salesman Problem , 1998, PPSN.

[21]  Mehdi Dastani,et al.  Languages of perception , 1998 .

[22]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[23]  Song-Chun Zhu,et al.  Embedding Gestalt Laws in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[25]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[26]  J. Crutchfield Is anything ever new?: considering emergence , 1999 .

[27]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[28]  Richard A. Watson,et al.  Analysis of recombinative algorithms on a non-separable building-block problem , 2000, FOGA.

[29]  L. Darrell Whitley,et al.  Dynamic Representations and Escaping Local Optima: Improving Genetic Algorithms and Local Search , 2000, AAAI/IAAI.

[30]  A. Delchambre,et al.  Grouping genetic algorithms: an efficient method to solve the cell formation problem , 2000 .

[31]  Katia P. Sycara,et al.  Evolutionary Search, Stochastic Policies with Memory, and Reinforcement Learning with Hidden State , 2001, ICML.

[32]  ATSPDavid S. JohnsonAT Experimental Analysis of Heuristics for the Stsp , 2001 .

[33]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[34]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[35]  J. Pollack,et al.  Compositional evolution: interdisciplinary investigations in evolvability, modularity, and symbiosis , 2002 .

[36]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[37]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[38]  Reuven Y. Rubinstein,et al.  Cross-entropy and rare events for maximal cut and partition problems , 2002, TOMC.

[39]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[40]  Annie S. Wu,et al.  The Modular Genetic Algorithm: Exploiting Regularities in the Problem Space , 2003, ISCIS.

[41]  Zbigniew Skolicki,et al.  Improving Evolutionary Algorithms with Multi-representation Island Models , 2004, PPSN.

[42]  Dirk Thierens,et al.  Hierarchical Genetic Algorithms , 2004, PPSN.

[43]  Rudolf Paul Wiegand,et al.  An analysis of cooperative coevolutionary algorithms , 2004 .

[44]  Melanie Mitchell,et al.  What Makes a Problem Hard for a Genetic Algorithm? Some Anomalous Results and Their Explanation , 2004, Machine Learning.

[45]  Hugues Bersini Whatever emerges should be intrinsically useful , 2004 .

[46]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[47]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[48]  Zbigniew Skolicki,et al.  An analysis of island models in evolutionary computation , 2005, GECCO '05.

[49]  Allan Tucker,et al.  RGFGA: An Efficient Representation and Crossover for Grouping Genetic Algorithms , 2005, Evolutionary Computation.

[50]  Hugues Bersini,et al.  CoEvolution of Effective Observers and Observed Multi-agents System , 2005, ECAL.

[51]  Marco Saerens,et al.  Tuning Continual Exploration in Reinforcement Learning , 2007 .

[52]  Jiah-Shing Chen,et al.  A Relation-Based Genetic Algorithm for Partitioning Problems with Applications , 2007, IEA/AIE.

[53]  Alberto Moraglio,et al.  Geometric Crossovers for Multiway Graph Partitioning , 2007, Evolutionary Computation.

[54]  Hugues Bersini,et al.  A gestalt genetic algorithm: less details for better search , 2007, GECCO '07.

[55]  Róbert Ványi,et al.  Compositional evolution: the impact of sex, symbiosis and modularity on the gradualist framework of evolution , 2008, Genetic Programming and Evolvable Machines.

[56]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[57]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .