An introduction to InP-based generic integration technology

Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.

Richard V. Penty | Jing Zhao | Yuqing Jiao | Adrian Wonfor | Daniele Melati | Andrea Melloni | J. Bolk | Mohand Achouche | V Valentina Moskalenko | Kevin A. Williams | Weiming Yao | Tjibbe de Vries | Patty Stabile | Twan Korthorst | Arjen Bakker | Norbert Grote | K Katarzyna Lawniczuk | Martin Schell | Dominik Heiss | Huub Ambrosius | Bob Musk | Xaveer Leijtens | MK Meint Smit | P. I. Kuindersma | Barry Smalbrugge | Jos van der Tol | Paul Firth | Saeed Tahvili | E Emil Kleijn | Francesco Morichetti | LM Luc Augustin | H. Debregeas | Josselin Pello | Erwin Bente | E. J. Geluk | René van Veldhoven | P. J. A. Thijs | D. D'Agostino | Hadi Rabbani | Stanislaw Stopinski | Antonio Corradi | DO Dzmitry Dzibrou | M. Felicetti | E Elton Bitincka | Rui Santos | Giovanni Gilardi | SP Srivathsa Bhat | Gunther Roelkens | MJ Michael Wale | Francisco M. Soares | Jean-Louis Gentner | Dominic Gallagher | Andrew Dabbs | RG Ronald Broeke | D. J. Robbins | A. Melloni | F. Morichetti | R. Penty | A. Wonfor | J. V. D. van der Tol | E. Bente | B. Smalbrugge | K. Williams | X. Leijtens | D. Melati | G. Roelkens | R. V. van Veldhoven | Y. Jiao | M. Wale | M. Schell | E. Geluk | W. Yao | D. D’Agostino | H. Ambrosius | M. Achouche | J. Pello | P. Kuindersma | J. Gentner | N. Grote | G. Gilardi | Jing Zhao | Tjibbe de Vries | F. Soares | H. Debrégeas | V. Moskalenko | K. Lawniczuk | L. Augustin | M. Smit | D. Heiss | S. Tahvili | P. Thijs | R. Broeke | E. Kleijn | S. Bhat | J. Bolk | E. Bitincka | S. Stopinski | B. Musk | A. Bakker | D. Dzibrou | P. Firth | A. Corradi | R. Santos | J. Van Der Tol | A. Dabbs | David Robbins | Hadi Rabbani | M. Felicetti | P. Stabile | T. Korthorst | D. Gallagher | Rui Santos | Patty Stabile | Andrew P. Dabbs | S. Stopiński

[1]  H. Tsai,et al.  Large-scale photonic integrated circuits , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[3]  J. Capmany,et al.  Integrated InP frequency discriminator for Phase-modulated microwave photonic links. , 2013, Optics express.

[4]  A. Wonfor,et al.  Demonstration of a lossless monolithic 16 x16 QW SOA switch , 2009, 2009 35th European Conference on Optical Communication.

[5]  R. Piramidowicz,et al.  Monolithically integrated 8-channel WDM reflective modulator , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[6]  Mk Meint Smit,et al.  A compact and fast photonic true-time-delay beamformer with integrated spot-size converters , 2006 .

[7]  R. Hanfoug,et al.  A Compact Integrated Polarization Splitter/Converter in InGaAsP–InP , 2007, IEEE Photonics Technology Letters.

[8]  D. D'Agostino,et al.  A dense spot size converter array fabricated in a generic process on InP , 2013, Microtechnologies for the New Millennium.

[9]  M. Zirngibl,et al.  WDM receiver by monolithic integration of an optical preamplifier, waveguide grating router and photodiode array , 1995 .

[10]  M. Smit New focusing and dispersive planar component based on an optical phased array , 1988 .

[11]  Hiroshi Fukuda,et al.  High-performance silicon photonics technology for telecommunications applications , 2014, Science and technology of advanced materials.

[12]  G. Unterborsch,et al.  Monolithically integrated polarisation diversity heterodyne receivers on GaInAsP/InP , 1994 .

[13]  Radhakrishnan Nagarajan,et al.  Large-Scale InP Transmitter PICs for PM-DQPSK Fiber Transmission Systems , 2010, IEEE Photonics Technology Letters.

[14]  K. A. Williams,et al.  Dynamic multi-path routing in a monolithic active-passive 16×16 optoelectronic switch , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[15]  Hiroyuki Ishii,et al.  Monolithically integrated 64-channel WDM channel selector on InP substrate , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[16]  Hiroyuki Ishii,et al.  Monolithically integrated WDM channel selectors on InP substrates , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[17]  Mk Meint Smit,et al.  Compact low loss 8x10 GHz polarisation independent WDM receiver , 1996 .

[18]  Gerhard Heise,et al.  Grating spectrograph in InGaAsP/InP for dense wavelength division multiplexing , 1991 .

[19]  K A Williams,et al.  Relaxed Dimensional Tolerance Whispering Gallery Microbends , 2011, Journal of Lightwave Technology.

[20]  M. Zirngibl,et al.  An 18-channel multifrequency laser , 1996, IEEE Photonics Technology Letters.

[21]  A. Beling,et al.  InP-based waveguide-integrated photodetector with 100-GHz bandwidth , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  X. J. M. Leijtens,et al.  Monolithic Nanosecond-Reconfigurable 4 $\,\times\,$4 Space and Wavelength Selective Cross-Connect , 2012, Journal of Lightwave Technology.

[23]  J. Bowers,et al.  Hybrid Silicon Photonics for Optical Interconnects , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Xaveer Xaveer Leijtens,et al.  Monolithically integrated filtered-feedback multi-wavelength laser with Mach-Zehnder modulators , 2012 .

[25]  M.K. Smit,et al.  Polarization independent dilated WDM cross-connect on InP , 1999, IEEE Photonics Technology Letters.

[26]  M. Zirngibl,et al.  High performance, 12 frequency optical multichannel controller , 1994 .

[27]  I. Bennion,et al.  Guided wave switch array using electro-optic and carrier depletion effects in indium phosphide , 1991 .

[28]  N. Grote,et al.  Transmitter PIC for THz applications based on generic integration technology , 2013, 2013 International Conference on Indium Phosphide and Related Materials (IPRM).

[29]  Jan Danckaert,et al.  Discretely Tunable Laser Based on Filtered Feedback for Telecommunication Applications , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Akira Saito,et al.  Material design and structural color inspired by biomimetic approach , 2011, Science and technology of advanced materials.

[31]  L A Coldren,et al.  High Performance InP-Based Photonic ICs—A Tutorial , 2011, Journal of Lightwave Technology.

[32]  H de Waardt,et al.  A dual purpose, all optical multiplexer circuit in InP, for multiplexing clock and NRZ data, and for transmultiplexing WDM to TDM. , 2012, Optics express.

[33]  Adam Densmore,et al.  44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[34]  D. Trommer,et al.  A novel flexible, reliable and easy to use technique for the fabrication of optical spot size converters for InP based PICs , 1999, Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362).

[35]  A. Talneau,et al.  10-wavelength 200-GHz channel spacing emitter integrating DBR lasers with a PHASAR on InP for WDM applications , 1999, IEEE Photonics Technology Letters.

[36]  S. Forrest,et al.  Photonic integration using asymmetric twin-waveguide (ATG) technology: part II-devices , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Mk Meint Smit InP photonic integrated circuits , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[38]  Heinz-Gunter Bach Special 100 GHz Photodetectors for Communications , 2013 .

[39]  Lm Luc Augustin,et al.  Reduced reflections from multimode interference couplers , 2006 .

[40]  A. Wonfor,et al.  Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device , 2012, ISLC 2012 International Semiconductor Laser Conference.

[41]  Ys Oei,et al.  High performance 4-channel PHASAR wavelength demultiplexer integrated with photodetectors , 1993 .

[42]  Lars Thylén,et al.  Monolithically integrated 44 InGaAsP/InP laser amplifier gate switch arrays , 1992 .

[43]  S. Suzuki,et al.  Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution , 1990 .

[44]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[45]  Mk Meint Smit,et al.  Optimizing imbalance and loss in 2/spl times/2 3 dB multimode interference couplers via access waveguide width , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[46]  C. Dragone An N*N optical multiplexer using a planar arrangement of two star couplers , 1991, IEEE Photonics Technology Letters.

[47]  Qixiang Cheng,et al.  Scalable, Low-Energy Hybrid Photonic Space Switch , 2013, Journal of Lightwave Technology.

[48]  Frederic Pommereau,et al.  Sixteen-channel wavelength selector monolithically integrated on InP , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[49]  Mk Meint Smit,et al.  Photonic integrated Brillouin optical time domain reflection readout unit , 2011 .

[50]  M.K. Smit,et al.  Extremely small AWG demultiplexer fabricated on InP by using a double-etch Process , 2004, IEEE Photonics Technology Letters.

[51]  C. Burrus,et al.  Monolithic eight-wavelength demultiplexed receiver for dense WDM applications , 1995, IEEE Photonics Technology Letters.

[52]  Meint K. Smit,et al.  Multimode Interference Reflectors: A New Class of Components for Photonic Integrated Circuits , 2013, Journal of Lightwave Technology.

[53]  A. Rohit,et al.  Monolithically Integrated 8 × 8 Space and Wavelength Selective Cross-Connect , 2014, Journal of Lightwave Technology.

[54]  F. Gomez-Agis,et al.  320Gb/s data routing in a monolithic multistage semiconductor optical amplifier switching circuit , 2010, 36th European Conference and Exhibition on Optical Communication.

[55]  M.K. Smit,et al.  A compact nine-channel multiwavelength laser , 1996, IEEE Photonics Technology Letters.

[56]  D. J. Robbins,et al.  Generic foundry model for InP-based photonics , 2011 .

[57]  F. van Dijk,et al.  95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. , 2012, Optics Letters.

[58]  Daniele Melati,et al.  Multimode Interference Couplers With Reduced Parasitic Reflections , 2014, IEEE Photonics Technology Letters.

[59]  S. Murthy,et al.  Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s , 2006 .

[60]  Dzmitry O Dzibrou,et al.  Tolerant polarization converter for InGaAsP-InP photonic integrated circuits. , 2013, Optics letters.

[61]  Gunther Roelkens,et al.  Photonic integration in indium-phosphide membranes on silicon (IMOS) , 2014, Photonics West - Optoelectronic Materials and Devices.

[62]  K A Williams,et al.  Monolithic active-passive 16 × 16 optoelectronic switch. , 2012, Optics letters.

[63]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[64]  M. J. Wale,et al.  InP-Based Integrated Optical Pulse Shaper: Demonstration of Chirp Compensation , 2013, IEEE Photonics Technology Letters.

[65]  D Van Thourhout,et al.  III-V-on-silicon multi-frequency lasers. , 2013, Optics express.

[66]  Larry A. Coldren,et al.  The world's first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[67]  R. Piramidowicz,et al.  Integrated Optical Delay Lines for Time-Division Multiplexers , 2013, IEEE Photonics Journal.

[68]  Sylwester Latkowski,et al.  A wide bandwidth coherent optical comb source based on a monolithically integrated mode-locked ring laser , 2014, OFC 2014.

[69]  Valery Tolstikhin,et al.  Regrowth-free multi-guide vertical integration in InP for optical communications , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[70]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[71]  A. Bogoni,et al.  Multifunctional Current-Controlled InP Photonic Integrated Delay Interferometer , 2012, IEEE Journal of Quantum Electronics.

[72]  H. de Waardt,et al.  Widely tunable laser with dual ring resonator and Delayed Interferometer pairs, realized in generic InP technology , 2013, CLEO: 2013.

[73]  M. J. Wale,et al.  InP-Based Photonic Multiwavelength Transmitter With DBR Laser Array , 2013, IEEE Photonics Technology Letters.

[74]  M. Smit,et al.  Monolithic Multistage Optoelectronic Switch Circuit Routing 160 Gb/s Line-Rate Data , 2010, Journal of Lightwave Technology.

[75]  Jean Decobert,et al.  Selective-area-growth technology for flexible active building blocks , 2012 .

[76]  M. Schell,et al.  Performance of InP-based 90 °-hybrids QPSK receivers within C-Band , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[77]  V. Lal,et al.  Monolithically integrated active components: a quantum-well intermixing approach , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[78]  U. Koren,et al.  Wavelength division multiplexing light source with integrated quantum well tunable lasers and optical amplifiers , 1989 .

[79]  P. Tien Integrated optics and new wave phenomena in optical waveguides , 1977 .

[80]  M. Zirngibl,et al.  12 frequency WDM laser based on a transmissive waveguide grating router , 1994 .

[81]  M.K. Smit,et al.  Monolithic AWG-based Discretely Tunable Laser Diode With Nanosecond Switching Speed , 2009, IEEE Photonics Technology Letters.

[82]  S. J. B. Yoo,et al.  Monolithically integrated InP wafer-scale 100-channel × 10-GHz AWG and Michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[83]  Stewart E. Miller,et al.  Integrated optics: An introduction , 1969 .

[84]  Michael J. Wale Photonic integration challenges for next-generation networks , 2009, 2009 35th European Conference on Optical Communication.

[85]  J Leuthold,et al.  Spatial mode filters realized with multimode interference couplers. , 1996, Optics letters.