Raman scattering from fully strained Ge1−xSnx(x⩽0.22) alloys grown on Ge(001)2×1 by low-temperature molecular beam epitaxy

Fully strained single-crystal Ge1−xSnx alloys (x⩽0.22) deposited on Ge(001)2×1 by low-temperature molecular beam epitaxy have been studied by Raman scattering. The results are characterized by a Ge–Ge longitudinal optical (LO) phonon line, which shifts to lower frequencies with increasing x. Samples capped with a 200-A-thick Ge layer exhibit a second Ge–Ge LO phonon line whose position remains close to that expected from bulk Ge. For all samples, capped and uncapped, the frequency shift ΔωGeSn of the Ge–Ge LO phonon line from the Ge1−xSnx layer, with respect to the position for bulk Ge, is linear with the Sn fraction x (ΔωGeSn=−76.8x cm−1) over the entire composition range. Using the elastic constants, the Gruneisen parameter, and the shear phonon deformation parameter for Ge, we calculate the contribution of compressive strain to the total frequency shift to be Δωstrain=63.8x cm−1. Thus, the LO phonon shift in Ge1−xSnx due to substitutional-Sn-induced bond stretching in fully relaxed alloys is estimated ...

[1]  Fred H. Pollak,et al.  Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors , 1972 .

[2]  Greene,et al.  Surface morphology during multilayer epitaxial growth of Ge(001). , 1995, Physical review letters.

[3]  Harry A. Atwater,et al.  INTERBAND TRANSITIONS IN SNXGE1-X ALLOYS , 1997 .

[4]  J. Menéndez,et al.  Phonons in epitaxially grown α‐Sn1−xGex alloys , 1990 .

[5]  G. Abstreiter,et al.  Fabrication and properties of epitaxially stabilized Ge/α-Sn heterostructures on Ge(001) , 1992 .

[6]  Zhang,et al.  Vibrational properties of Si/Ge and alpha -Sn/Ge superlattices with intermixed interfaces. , 1993, Physical review. B, Condensed matter.

[7]  Richard A. Soref,et al.  Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures , 1993 .

[8]  S. Iyer,et al.  Molecular beam epitaxy of metastable, diamond structure SnxGe1−x alloys , 1989 .

[9]  P. M. Raccah,et al.  Growth of single-crystal metastable Ge1-xSnx alloys on Ge(100) and GaAs(100) substrates , 1987 .

[10]  Raphael Tsu,et al.  Thermal desorption of ultraviolet–ozone oxidized Ge(001) for substrate cleaning , 1993 .

[11]  H. Radamson,et al.  Growth of metastable Ge1−xSnx/Ge strained layer superlattices on Ge(001)2×1 by temperature‐modulated molecular beam epitaxy , 1995 .

[12]  Alfonso Baldereschi,et al.  Band structure and instability of Ge1−xSnx alloys , 1989 .

[13]  Melvin Lax,et al.  Temperature rise induced by a laser beam , 1977 .

[14]  S. Groves,et al.  BAND STRUCTURE OF GRAY TIN , 1963 .

[15]  G. Abstreiter,et al.  Raman scattering of α‐Sn/Ge superlattices on Ge (001) , 1993 .

[16]  H. Radamson,et al.  Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1 , 1998 .

[17]  Fred H. Pollak,et al.  Raman scattering in alloy semiconductors: Spatial correlation model , 1984 .

[18]  B. Tsaur,et al.  Synthesis of metastable, semiconducting Ge‐Sn alloys by pulsed UV laser crystallization , 1983 .

[19]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[20]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .