[Adaptative immunity and pathophysiology of multiple sclerosis].

[1]  Andrew K. Sewell,et al.  Why must T cells be cross-reactive? , 2012, Nature Reviews Immunology.

[2]  D. Laplaud,et al.  Frequency of circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients. , 2012, Clinical immunology.

[3]  Bernhard Hemmer,et al.  Potassium channel KIR4.1 as an immune target in multiple sclerosis. , 2012, The New England journal of medicine.

[4]  D. Hafler,et al.  Regulatory T cells in the central nervous system , 2012, Immunological reviews.

[5]  H. Harbo,et al.  The genetics of multiple sclerosis: an up‐to‐date review , 2012, Immunological reviews.

[6]  C. Mauri,et al.  Immune regulatory function of B cells. , 2012, Annual review of immunology.

[7]  G Giovannoni,et al.  The evidence for a role of B cells in multiple sclerosis , 2012, Neurology.

[8]  D. Saadoun,et al.  Vitamine D et auto-immunité. Deuxième partie : aspects cliniques , 2012 .

[9]  M. Pender CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis , 2012, Autoimmune diseases.

[10]  G. Giovannoni,et al.  Association of innate immune activation with latent Epstein-Barr virus in active MS lesions , 2012, Neurology.

[11]  G. Giovannoni,et al.  Translational Mini‐Review Series on B cell subsets in disease. B cells in multiple sclerosis: drivers of disease pathogenesis and Trojan horse for Epstein–Barr virus entry to the central nervous system? , 2012, Clinical and experimental immunology.

[12]  B. Becher,et al.  T(H)17 cytokines in autoimmune neuro-inflammation. , 2011, Current opinion in immunology.

[13]  R. Liblau,et al.  Role of CD8 T cell subsets in the pathogenesis of multiple sclerosis , 2011, FEBS letters.

[14]  T. Korn,et al.  Cytokines and effector T cell subsets causing autoimmune CNS disease , 2011, FEBS letters.

[15]  A. Bar-Or,et al.  B cells in multiple sclerosis: connecting the dots. , 2011, Current opinion in immunology.

[16]  P. Menheere,et al.  Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naïve/memory Breg ratio during a relapse but not in remission , 2011, Journal of Neuroimmunology.

[17]  F. Jadidi-Niaragh,et al.  Th17 Cell, the New Player of Neuroinflammatory Process in Multiple Sclerosis , 2011, Scandinavian journal of immunology.

[18]  B. Segal,et al.  IL-23 modulated myelin-specific T cells induce EAE via an IFNγ driven, IL-17 independent pathway , 2011, Brain, Behavior, and Immunity.

[19]  S. Audia,et al.  Les lymphocytes TH17 : différenciation, phénotype, fonctions, et implications en pathologie et thérapeutique humaine , 2011 .

[20]  W. Brück,et al.  Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients , 2011, PloS one.

[21]  R. Mechelli,et al.  CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. , 2011, Brain : a journal of neurology.

[22]  Yuhong Yang,et al.  Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? , 2011, Biochimica et biophysica acta.

[23]  M. Horwitz,et al.  Epstein-Barr virus infection of human brain microvessel endothelial cells: A novel role in multiple sclerosis , 2011, Journal of Neuroimmunology.

[24]  E. S. St. Clair,et al.  Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. , 2011, Blood.

[25]  N. Tubridy,et al.  T cells in multiple sclerosis and experimental autoimmune encephalomyelitis , 2010, Clinical and experimental immunology.

[26]  Nitin J. Karandikar,et al.  Memory B cells from a subset of treatment‐naïve relapsing‐remitting multiple sclerosis patients elicit CD4+ T‐cell proliferation and IFN‐γ production in response to myelin basic protein and myelin oligodendrocyte glycoprotein , 2010, European journal of immunology.

[27]  T. Tedder,et al.  Regulatory B Cells (B10 Cells) and Regulatory T Cells Have Independent Roles in Controlling Experimental Autoimmune Encephalomyelitis Initiation and Late-Phase Immunopathogenesis , 2010, The Journal of Immunology.

[28]  O. Lantz,et al.  Antimicrobial activity of mucosal-associated invariant T cells , 2010, Nature Immunology.

[29]  J. Souberbielle,et al.  Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis? , 2010, Brain : a journal of neurology.

[30]  S. Vukusic,et al.  Geographic variations of multiple sclerosis in France. , 2010, Brain : a journal of neurology.

[31]  J. Goverman,et al.  Viral Infection Triggers Central Nervous System Autoimmunity Via Activation of Dual TCR-Expressing CD8+ T Cells , 2010, Nature Immunology.

[32]  K. Venken,et al.  Disturbed regulatory T cell homeostasis in multiple sclerosis. , 2010, Trends in molecular medicine.

[33]  L. Kasper,et al.  Multiple sclerosis immunology , 2010, Neurology.

[34]  T. Tedder,et al.  B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer , 2010, Annals of the New York Academy of Sciences.

[35]  L. Fugger,et al.  Pathogenic CD8+ T cells in multiple sclerosis , 2009, Annals of neurology.

[36]  J. Goverman Autoimmune T cell responses in the central nervous system , 2009, Nature Reviews Immunology.

[37]  B. Engelhardt,et al.  C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE , 2009, Nature Immunology.

[38]  Jianping Jin,et al.  Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. , 2009, Clinical immunology.

[39]  A. Compston,et al.  Multiple sclerosis , 2008, The Lancet.

[40]  D. Laplaud,et al.  Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. , 2008, The Journal of clinical investigation.

[41]  D. Wraith,et al.  Cutting Edge: Th1 Cells Facilitate the Entry of Th17 Cells to the Central Nervous System during Experimental Autoimmune Encephalomyelitis1 , 2008, The Journal of Immunology.

[42]  P. Youinou,et al.  Regulatory B lymphocytes in humans: a potential role in autoimmunity. , 2008, Arthritis and rheumatism.

[43]  R. Reynolds,et al.  Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain , 2007, The Journal of experimental medicine.

[44]  H. Lassmann,et al.  Multiple sclerosis: T-cell receptor expression in distinct brain regions. , 2007, Brain : a journal of neurology.

[45]  Nathalie Arbour,et al.  Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation , 2007, Nature Medicine.

[46]  Roland Martin,et al.  Multiple sclerosis: a complicated picture of autoimmunity , 2007, Nature Immunology.

[47]  H. Lassmann,et al.  Experimental models of multiple sclerosis. , 2007, Revue neurologique.

[48]  M. Duddy,et al.  Distinct Effector Cytokine Profiles of Memory and Naive Human B Cell Subsets and Implication in Multiple Sclerosis , 2007, The Journal of Immunology.

[49]  J. Lünemann,et al.  Epstein-Barr virus and multiple sclerosis , 2007, Current neurology and neuroscience reports.

[50]  G. Pantaleo,et al.  CSF enrichment of highly differentiated CD8+ T cells in early multiple sclerosis. , 2007, Clinical immunology.

[51]  H. Hartung,et al.  Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis , 2006, Proceedings of the National Academy of Sciences.

[52]  T. Mcclanahan,et al.  IL-23 drives a pathogenic T cell population that induces autoimmune inflammation , 2005, The Journal of experimental medicine.

[53]  Clare Baecher-Allan,et al.  Loss of Functional Suppression by CD4+CD25+ Regulatory T Cells in Patients with Multiple Sclerosis , 2004, The Journal of experimental medicine.

[54]  M. Barnett,et al.  Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion , 2004, Annals of neurology.

[55]  M. Duddy,et al.  Distinct Profiles of Human B Cell Effector Cytokines: A Role in Immune Regulation?1 , 2004, The Journal of Immunology.

[56]  Shimon Sakaguchi,et al.  IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. , 2004, International immunology.

[57]  R. Kastelein,et al.  Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain , 2003, Nature.

[58]  David Gray,et al.  B cells regulate autoimmunity by provision of IL-10 , 2002, Nature Immunology.

[59]  H. Neumann,et al.  Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases , 2002, Trends in Neurosciences.

[60]  A. Ziegler,et al.  Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. , 2002, Brain : a journal of neurology.

[61]  H. Neumann,et al.  Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. , 2001, The American journal of pathology.

[62]  Hans Lassmann,et al.  Clonal Expansions of Cd8+ T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction , 2000, The Journal of experimental medicine.

[63]  P. Kivisäkk,et al.  Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis , 1999, Multiple sclerosis.

[64]  Charles A. Janeway,et al.  Experimental Autoimmune Encephalomyelitis Induction in Genetically B Cell–deficient Mice , 1996, The Journal of experimental medicine.

[65]  R. Hirsch,et al.  EXACERBATIONS OF MULTIPLE SCLEROSIS IN PATIENTS TREATED WITH GAMMA INTERFERON , 1987, The Lancet.

[66]  T. Rivers,et al.  OBSERVATIONS ON ATTEMPTS TO PRODUCE ACUTE DISSEMINATED ENCEPHALOMYELITIS IN MONKEYS , 1933, The Journal of experimental medicine.

[67]  A. Minagar Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis , 2011 .

[68]  Jia Newcombe,et al.  Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. , 2008, The American journal of pathology.

[69]  R. Reynolds,et al.  Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. , 2007, Brain : a journal of neurology.

[70]  L. Steinman Erratum: A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage , 2007, Nature Medicine.

[71]  B. Weinshenker,et al.  Multiple sclerosis. , 2000, The New England journal of medicine.

[72]  C. Confavreux,et al.  [Etiology of multiple sclerosis]. , 1991, La Revue du praticien.

[73]  J. Mussini,et al.  [Immunology of multiple sclerosis]. , 1982, La semaine des hopitaux : organe fonde par l'Association d'enseignement medical des hopitaux de Paris.

[74]  W. L. Benedict,et al.  Multiple Sclerosis , 2007, Journal - Michigan State Medical Society.