Cocyclic Hadamard matrices and difference sets

Abstract This paper locates cocyclic Hadamard matrices within the mainstream of combinatorial design theory. We prove that the existence of a cocyclic Hadamard matrix of order 4t is equivalent to the existence of a normal relative difference set with parameters (4t,2,4t,2t) . In the basic case we note there is a corresponding equivalence between coboundary Hadamard matrices and Menon–Hadamard difference sets. These equivalences unify and explain results in the theories of Hadamard groups, divisible designs with regular automorphism groups, and periodic autocorrelation functions.

[1]  N. Ito REMARKS ON HADAMARD GROUPS , 1996 .

[2]  D. L. Flannery Transgression and the calculation of cocyclic matrices , 1995, Australas. J Comb..

[3]  Warwick de Launey,et al.  On cocyclic weighing matrices and the regular group actions of certain paley matrices , 2000, Discret. Appl. Math..

[4]  Warwick de Launey On the construction of n-dimensional designs from 2-dimensional designs , 1990, Australas. J Comb..

[5]  Warwick de Launey,et al.  Cocyclic Orthogonal Designs and the Asymptotic Existence of Cocyclic Hadamard Matrices and Maximal Size Relative Difference Sets with Forbidden Subgroup of Size 2 , 2001, J. Comb. Theory, Ser. A.

[6]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[7]  Haruo Tsukada AFFINE LIE ALGEBRAS AND CALOGERO SYSTEMS , 1997 .

[8]  K. J. Horadam,et al.  Cocyclic Development of Designs , 1993 .

[9]  A. T. Butson,et al.  Relative difference sets , 1966 .

[10]  K. J. Horadam,et al.  Generation of Cocyclic Hadamard Matrices , 1995 .

[11]  D. Flannery,et al.  Calculation of cocyclic matrices , 1996 .

[12]  Richard J. Turyn An Infinite Class of Williamson Matrices , 1972, J. Comb. Theory, Ser. A.

[13]  Noboru Ito,et al.  On Hadamard Groups , 1994 .

[14]  Noboru Ito,et al.  ON HADAMARD GROUPS III , 1997 .

[15]  J. Williamson Hadamard’s determinant theorem and the sum of four squares , 1944 .

[16]  K. K. Siu,et al.  Two-Dimensional Binary Arrays with Good Autocorrelation , 1979, Inf. Control..

[17]  Jonathan Jedwab,et al.  Generalized perfect arrays and menon difference sets , 1992, Des. Codes Cryptogr..

[18]  D. Flannery,et al.  Cocyclic Hadamard Matrices and Hadamard Groups Are Equivalent , 1997 .

[19]  Kathy J. Horadam,et al.  A weak difference set construction for higher dimensional designs , 1993, Des. Codes Cryptogr..

[20]  Kathy J. Horadam,et al.  Cocyclic Hadamard matrices over ℤt × ℤ22 , 1995, Australas. J Comb..

[21]  Bernhard Schmidt,et al.  Williamson Matrices and a Conjecture of Ito's , 1999, Des. Codes Cryptogr..

[22]  D. Jungnickel On Automorphism Groups of Divisible Designs , 1982, Canadian Journal of Mathematics.

[23]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[24]  Hanfried Lenz,et al.  Design theory , 1985 .

[25]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[26]  Wolf H. Holzmann,et al.  A computer search for complex Golay sequences , 1994, Australas. J Comb..

[27]  L. E. Kopilovich On perfect binary arrays , 1988 .

[28]  J. J. Seidel,et al.  Orthogonal Matrices with Zero Diagonal , 1967, Canadian Journal of Mathematics.

[29]  J. J. Seidel,et al.  A skew Hadamard matrix of order 36 , 1970, Journal of the Australian Mathematical Society.

[30]  Kathy J. Horadam,et al.  Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets , 1998, Des. Codes Cryptogr..

[31]  Mieko Yamada Hadamard matrices of generalized quaternion type , 1991, Discret. Math..