Load Non-Proportionality in the Computational Models

Chapter presents various models for calculating multiaxial fatigue. Unlike many other similar comparisons, this analysis describes damage models from the point of view of the way the non-proportionality loading was taken into account. Many authors, while analysing these models, limit themselves to stating whether a given model can be applied in non-proportional loading conditions. A presumed quantitative analysis of the calculation results compares models of the same class. The authors do not analyse their proposals in relation to the solutions from other areas of fatigue or related fields such as plasticity theory. A comparison of calculation models that take into account the influence of non-proportionality depending on the type of the model as well as what stage of the calculation process this model pertains allows different approaches to be thoroughly revealed. Articles in periodicals do not provide space for a broad cross-sectional comparative analysis of different models. In order to reveal the differences, the introduction to Chap. 4 presents a division of models into classes. This division should facilitate the comparison and an evaluation of calculation methods.

[1]  E. Macha Generalized Fatigue Criterion of maximum shear and normal strains on the fracture plane for materials under multiaxial random loadings , 1991 .

[2]  Cetin Morris Sonsino,et al.  Present limitations in the assessment of components under multiaxial service loading , 2005 .

[3]  Rl Meltzer,et al.  Multiaxial Fatigue: A Survey of the State of the Art , 1981 .

[4]  Bastien Weber,et al.  On the efficiency of the integral approach in multiaxial fatigue* , 2006 .

[5]  M. V. Borodii,et al.  Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime , 2007 .

[6]  J. L. Roux,et al.  Load path effect on fatigue crack propagation in I+II+III mixed mode conditions – Part 1: Experimental investigations , 2014 .

[7]  Takahiro Hata,et al.  A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading , 2006 .

[8]  Ewald Macha Spectral method of fatigue life calculation under random multiaxial loading , 1996 .

[9]  Ewald Macha,et al.  A survey of failure criteria and parameters in mixed-mode fatigue crack growth , 2009 .

[10]  Harald Zenner,et al.  Simulation of microcrack growth for different load sequences and comparison with experimental results , 2005 .

[11]  K. J. Miller,et al.  HIGH TEMPERATURE LOW CYCLE BIAXIAL FATIGUE OF TWO STEELS , 1979 .

[12]  Luis Reis,et al.  Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials , 2009 .

[13]  Adam Niesłony,et al.  Spectral Method in Multiaxial Random Fatigue , 2007 .

[14]  W. Findley A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending , 1959 .

[16]  J. A. Wang,et al.  An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading conditions , 2001 .

[17]  Minoru Kawamoto,et al.  The Strength of Metals under Combined Alternating Bending and Torsion with Phace Difference , 1946 .

[18]  Sylvain Calloch,et al.  Triaxial tension–compression tests for multiaxial cyclic plasticity , 1999 .

[19]  Takashi Ogata,et al.  FRACTURE MECHANISMS AND LIFE ASSESSMENT UNDER HIGH‐STRAIN BIAXIAL CYCLIC LOADING OF TYPE 304 STAINLESS STEEL , 1989 .

[20]  Pingsha Dong,et al.  A path-dependent cycle counting method for variable-amplitude multi-axial loading , 2010 .

[21]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method , 1999 .

[22]  D. Socie,et al.  Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel , 1995 .

[23]  M.H.A. Bonte,et al.  Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components , 2007 .

[24]  Z. Kuang,et al.  Biaxial path dependence of macroscopic response and microscopic dislocation substructure in type 302 stainless steel , 1996 .

[25]  Huseyin Sehitoglu,et al.  Modeling of cyclic ratchetting plasticity, part i: Development of constitutive relations , 1996 .

[26]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[27]  Takamoto Itoh,et al.  A damage model for estimating low cycle fatigue lives under nonproportional multiaxial loading , 2003 .

[28]  E. Macha,et al.  Simulation investigations of the position of Fatigue Fracture Plane in materials with biaxial loads , 1989 .

[29]  Ahmed Benallal,et al.  Effects of non‐proportional loadings in cyclic elasto‐viscoplasticity: experimental, theoretical and numerical aspects , 1988 .

[30]  S-B Lee,et al.  A Criterion for Fully Reversed Out-of-Phase Torsion and Bending , 1985 .

[31]  Ali Fatemi,et al.  Small Crack Growth in Multiaxial Fatigue , 1992 .

[32]  A. Fatemi,et al.  Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths , 2010 .

[33]  D. L. Mcdiarmid A GENERAL CRITERION FOR HIGH CYCLE MULTIAXIAL FATIGUE FAILURE , 1991 .

[34]  Franck Morel,et al.  A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading , 2000 .

[35]  E. Tanaka,et al.  A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. , 1994 .

[36]  Roberto Tovo,et al.  A stress invariant based spectral method to estimate fatigue life under multiaxial random loading , 2011 .

[37]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[38]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[39]  Ali Fatemi,et al.  Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions , 2010 .

[40]  Janusz Sempruch,et al.  Use of a load non-proportionality measure in fatigue under out-of-phase combined bending and torsion , 2004 .

[41]  H. Gough Engineering Steels under Combined Cyclic and Static Stresses , 1949 .

[42]  Luca Susmel,et al.  A stress invariant based criterion to estimate fatigue damage under multiaxial loading , 2008 .

[43]  Yanyao Jiang,et al.  Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper , 2008 .

[44]  Marco Antonio Meggiolaro,et al.  An improved multiaxial rainflow algorithm for non-proportional stress or strain histories – Part I: Enclosing surface methods , 2012 .

[45]  S. Calloch,et al.  Additional Hardening Due to Tension-Torsion Nonproportional Loadings: Influence of the Loading Path Shape , 1997 .

[46]  V. Doquet,et al.  Influence of the loading path on fatigue crack growth under mixed-mode loading , 2009 .

[47]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[48]  D. Skibicki Experimental verification of fatigue loading nonproportionality model , 2007 .

[49]  Lakhdar Taleb,et al.  Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models , 2008 .

[50]  F. Morel,et al.  A multiaxial life prediction method applied to a sequence of non similar loading in high cycle fatigue , 2003 .

[51]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[52]  M. Brown,et al.  CYCLIC DEFORMATION OF 1% Cr‐Mo‐V STEEL UNDER OUT‐OF‐PHASE LOADS , 1979 .

[53]  Y. Lei,et al.  J-integral evaluation for cases involving non-proportional stressing , 2005 .

[54]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[55]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[56]  P. Kurath,et al.  A theoretical evaluation of plasticity hardening algorithms for nonproportional loadings , 1996 .

[57]  Ewald Macha,et al.  A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime , 1999 .

[58]  Liu Yu-jie A Damage-coupled Multi-axial Time-dependent Low Cycle Fatigue Failure Model for SS304 Stainless Steel at High Temperature , 2011 .

[59]  C. M. Sonsino,et al.  Spectral fatigue life estimation for components under multiaxial random loading , 2012 .

[60]  I. Papadopoulos,et al.  Critical plane approaches in high-cycle fatigue : On the definition of the amplitude and mean value of the shear stress acting on the critical plane , 1998 .

[61]  Michael Vormwald,et al.  Short fatigue crack growth under nonproportional multiaxial elastic–plastic strains , 2006 .

[62]  Andrea Carpinteri,et al.  Biaxial/Multiaxial fatigue and fracture , 2003 .

[63]  Adam Niesłony,et al.  Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method , 2010 .

[64]  Yung-Li Lee,et al.  Fatigue predictions for components under biaxial reversed loading , 1991 .

[65]  Jean-Louis Chaboche,et al.  On some modifications of kinematic hardening to improve the description of ratchetting effects , 1991 .

[66]  Franck Morel A FATIGUE LIFE PREDICTION METHOD BASED ON A MESOSCOPIC APPROACH IN CONSTANT AMPLITUDE MULTIAXIAL LOADING , 1998 .

[67]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[68]  D. Rozumek,et al.  Fatigue crack growth in AlCu4Mg1 under nonproportional bending-with-torsion loading , 2011 .

[69]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method , 1999 .

[70]  J. L. Roux,et al.  Load path effect on fatigue crack propagation in I + II + III mixed mode conditions – Part 2: Finite element analyses , 2014 .

[71]  M. W. Brown,et al.  Low-Cycle Fatigue Under Out-of-Phase Loading Conditions , 1977 .

[73]  Xu Chen,et al.  LOW‐CYCLE FATIGUE UNDER NON‐PROPORTIONAL LOADING , 1996 .

[74]  Harald Zenner,et al.  Corrigendum to “On the fatigue limit of ductile metals under complex multiaxial loading” [International Journal of Fatigue 22 (2000) 137–145] , 2000 .

[75]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[76]  M. François A plasticity model with yield surface distortion for non proportional loading , 2001 .

[77]  Masahiro Takanashi,et al.  Low cycle fatigue life of Ti–6Al–4V alloy under non-proportional loading , 2012 .

[78]  Peter Kurath,et al.  Characteristics of the Armstrong-Frederick type plasticity models , 1996 .

[79]  I. V. Papadopoulos,et al.  Long life fatigue under multiaxial loading , 2001 .

[80]  A. Constantinescu,et al.  Plasticity and asperity-induced fatigue crack closure under mixed-mode loading , 2010 .

[81]  Ahmed Benallal,et al.  Constitutive Equations for Nonproportional Cyclic Elasto-Viscoplasticity , 1987 .

[82]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[83]  Peter Kurath,et al.  Nonproportional cyclic deformation: critical experiments and analytical modeling , 1997 .

[84]  José Alexander Araújo,et al.  Multiaxial fatigue: a stress based criterion for hard metals , 2005 .

[85]  José Alexander Araújo,et al.  Prismatic hull: A new measure of shear stress amplitude in multiaxial high cycle fatigue , 2009 .

[86]  A. Karolczuk Non-local area approach to fatigue life evaluation under combined reversed bending and torsion , 2008 .

[87]  C. M. Sonsino,et al.  Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses , 1995 .

[88]  Ewald Macha,et al.  Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading , 2005 .

[89]  Dan Jin,et al.  Fatigue life prediction of type 304 stainless steel under sequential biaxial loading , 2006 .

[90]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .