A Novel Spatiotemporal Fuzzy Method for Modeling of Complex Distributed Parameter Processes

Fuzzy modeling has been widely used to model lumped parameter systems. However, it cannot be used to model complex distributed parameter systems (DPS) due to its inability to handle spatial dynamics. In this paper, we propose a novel spatiotemporal fuzzy method for the modeling of complex nonlinear DPSs. A spatial fuzzy model is first constructed to represent the nonlinear spatial dynamics. This process ensures that the space information is inherently considered in the spatiotemporal fuzzy model. A fuzzy model is then used to represent the nonlinear temporal dynamics. These two fuzzy models are further integrated to construct a spatiotemporal fuzzy model, which allows for the reconstruction of the DPS. Additionally, it can improve the modeling robustness even in the presence of noise due to the robust ability of fuzzy modeling. Performance analyses and experimental validations further show that the proposed method can effectively model complex nonlinear DPSs and has the better modeling ability than several commonly used methods.

[1]  Guanrong Chen,et al.  Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.

[2]  Junghui Chen,et al.  Self-active and recursively selective Gaussian process models for nonlinear distributed parameter systems , 2015 .

[3]  Jun Xiao,et al.  Fuzzy controller for wall-climbing microrobots , 2004, IEEE Transactions on Fuzzy Systems.

[4]  Stephen Duncan,et al.  Control of temperature profile for a spray deposition process , 2003, IEEE Trans. Control. Syst. Technol..

[5]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[6]  Han Pu Novel Identification Methods for T-S Fuzzy Model , 2010 .

[7]  Chang Liu,et al.  Online Spatiotemporal Extreme Learning Machine for Complex Time-Varying Distributed Parameter Systems , 2017, IEEE Transactions on Industrial Informatics.

[8]  Stephen A. Billings,et al.  Identification of finite dimensional models of infinite dimensional dynamical systems , 2002, Autom..

[9]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  Joel J. P. C. Rodrigues,et al.  Autonomous profile-based anomaly detection system using principal component analysis and flow analysis , 2015, Appl. Soft Comput..

[11]  Shaoyuan Li,et al.  A Three-Dimensional Fuzzy Control Methodology for a Class of Distributed Parameter Systems , 2007, IEEE Transactions on Fuzzy Systems.

[12]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[13]  Changyin Sun,et al.  Boundary Vibration Control of Variable Length Crane Systems in Two-Dimensional Space With Output Constraints , 2017, IEEE/ASME Transactions on Mechatronics.

[14]  Han-Xiong Li,et al.  Dynamic switching based fuzzy control strategy for a class of distributed parameter system , 2014 .

[15]  Kazuo Tanaka,et al.  Takagi‐Sugeno Fuzzy Model and Parallel Distributed Compensation , 2002 .

[16]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[17]  Shaoyuan Li,et al.  Model-based predictive control for spatially-distributed systems using dimensional reduction models , 2011, Int. J. Autom. Comput..

[18]  Zhen Liu,et al.  A Spatiotemporal Estimation Method for Temperature Distribution in Lithium-Ion Batteries , 2014, IEEE Transactions on Industrial Informatics.

[19]  Dan Givoli,et al.  Towards automating the finite element method: a test-bed for soft computing , 2003, Appl. Soft Comput..

[20]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[21]  Yao Yu,et al.  Mixed H2/H∞ fuzzy proportional-spatial integral control design for a class of nonlinear distributed parameter systems , 2017, Fuzzy Sets Syst..

[22]  Shaoyuan Li,et al.  A fuzzy-based spatio-temporal multi-modeling for nonlinear distributed parameter processes , 2014, Appl. Soft Comput..

[23]  Aníbal Ollero,et al.  Automatic design of fuzzy controllers for car-like autonomous robots , 2004, IEEE Transactions on Fuzzy Systems.

[24]  Huai-Ning Wu,et al.  Distributed proportional plus second-order spatial derivative control for distributed parameter systems subject to spatiotemporal uncertainties , 2014 .

[25]  Hao Ying,et al.  Fuzzy Control and Modeling: Analytical Foundations and Applications , 2000 .

[26]  W. Yuan,et al.  Numerical Reconstruction of the Catalyst Bed Temperature Distribution in a Multitubular Fixed-Bed Reactor by Karhunen–Loève Expansion , 2013 .

[27]  Thomas Gustafsson,et al.  Application of reduced models for robust control and state estimation of a distributed parameter system , 2009 .

[28]  Stephen A. Billings,et al.  State-Space Reconstruction and Spatio-Temporal Prediction of Lattice Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[29]  Minghui Huang,et al.  Online Spatiotemporal Least-Squares Support Vector Machine Modeling Approach for Time-Varying Distributed Parameter Processes , 2017 .

[30]  K. Hoo,et al.  Low-Order Model Identification of Distributed Parameter Systems by a Combination of Singular Value Decomposition and the Karhunen−Loève Expansion , 2002 .

[31]  Han-Xiong Li,et al.  Design of distributed H∞ fuzzy controllers with constraint for nonlinear hyperbolic PDE systems , 2012, Autom..

[32]  Shuang Zhang,et al.  Control Design for Nonlinear Flexible Wings of a Robotic Aircraft , 2017, IEEE Transactions on Control Systems Technology.

[33]  Han-Xiong Li,et al.  A Membership-Function-Dependent Approach to Design Fuzzy Pointwise State Feedback Controller for Nonlinear Parabolic Distributed Parameter Systems With Spatially Discrete Actuators , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[34]  Chenkun Qi,et al.  Modeling of distributed parameter systems for applications—A synthesized review from time–space separation , 2010 .

[35]  Minghui Huang,et al.  A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process , 2016, IEEE Transactions on Industrial Informatics.

[36]  Mian Jiang,et al.  New spatial basis functions for the model reduction of nonlinear distributed parameter systems , 2012 .

[37]  Muhammad R. Hajj,et al.  Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters , 2012 .

[38]  Chang Liu,et al.  Online Probabilistic Extreme Learning Machine for Distribution Modeling of Complex Batch Forging Processes , 2015, IEEE Transactions on Industrial Informatics.

[39]  Minghui Huang,et al.  Robust Spatiotemporal LS-SVM Modeling for Nonlinear Distributed Parameter System With Disturbance , 2017, IEEE Transactions on Industrial Electronics.

[40]  Karlene A. Hoo,et al.  Low-order Control-relevant Models for A Class of Distributed Parameter Systems , 2001 .