Static Analysis of Modularity of beta-Reduction in the Hyperbalanced lambda-Calculus

[1]  Zurab Khasidashvili Beta-reductions and Beta Developments of Lambda Terms with the Least Number of Steps , 1988, Conference on Computer Logic.

[2]  Andrea Asperti,et al.  The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.

[3]  Vinod Kathail,et al.  Optimal interpreters for lambda-calculus based functional languages , 1990 .

[4]  R. Kennaway,et al.  Static analysis of modularity of β-reduction in the hyperbalanced λ-calculus , 2002 .

[5]  John R. W. Glauert,et al.  The Geometry of Orthogonal Reduction Spaces , 1997, ICALP.

[6]  Adolfo Piperno,et al.  A syntactical analysis of normalization , 2000, J. Log. Comput..

[7]  Mizuhito Ogawa,et al.  Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems , 2001, Inf. Comput..

[8]  Jean-Jacques Lévy,et al.  An Algebraic Interpretation of the lambda beta K-Calculus; and an Application of a Labelled lambda -Calculus , 1976, Theor. Comput. Sci..

[9]  Adolfo Piperno,et al.  Normalization of Typable Terms by Superdevelopments , 1998, CSL.

[10]  John Lamping An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[11]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[12]  Harry G. Mairson,et al.  Parallel beta reduction is not elementary recursive , 1998, POPL '98.

[13]  Zurab Khasidashvili Optimal Normalization in Orthogonal Term Rewriting Systems , 1993, RTA.

[14]  John R. W. Glauert,et al.  Relative Normalization in Deterministic Residual Structures , 1996, CAAP.

[15]  C. Laneve,et al.  Paths in the lambda-calculus , 1994, LICS 1994.

[16]  Femke van Raamsdonk Confluence and Superdevelopments , 1993, RTA.