Pedotransfer in soil physics: trends and outlook — A review —

Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships. This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described. Estimating parameter correlation is adv...

[1]  Budiman Minasny,et al.  From pedotransfer functions to soil inference systems , 2002 .

[2]  Wim Cornelis,et al.  A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data , 2012 .

[3]  J. Parker,et al.  Physical and chemical characterization of the Groseclose soil mapping unit , 1986 .

[4]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[5]  Alfred E. Hartemink,et al.  Predicting soil properties in the tropics , 2011 .

[6]  Qing Zhu,et al.  Using different multimodel ensemble approaches to simulate soil moisture in a forest site with six traditional pedotransfer functions , 2014, Environ. Model. Softw..

[7]  Wim Cornelis,et al.  Revisiting the pseudo continuous pedotransfer function concept: impact of data quality and data mining method , 2014 .

[8]  Yakov A. Pachepsky,et al.  Scaling and Pedotransfer in Numerical Simulations of Flow and Transport in Soils , 2013 .

[9]  Christopher G. Uchrin,et al.  Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils , 1994 .

[10]  Luis Samaniego,et al.  Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin , 2015 .

[11]  S. Wuest Seasonal Variation in Soil Bulk Density, Organic Nitrogen, Available Phosphorus, and pH , 2015 .

[12]  R. Carsel,et al.  Developing joint probability distributions of soil water retention characteristics , 1988 .

[13]  E. Schulze,et al.  How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories , 2011 .

[14]  Walter J. Rawls,et al.  USE OF SOIL TEXTURE, BULK DENSITY, AND SLOPE OF THE WATER RETENTION CURVE TO PREDICT SATURATED HYDRAULIC CONDUCTIVITY , 1998 .

[15]  H. Reuter,et al.  Functional Digital Soil Mapping for the Prediction of Available Water Capacity in Nigeria using Legacy Data , 2013 .

[16]  Walter J. Rawls,et al.  Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics , 2001 .

[17]  N. R. Fausey,et al.  Effect of Sample Cross-Sectional Area on Saturated Hydraulic Conductivity in Tow Structured Clay Soils , 1985 .

[18]  Peter Dietrich,et al.  Digital soil mapping: Approaches to integrate sensing techniques to the prediction of key soil properties , 2013 .

[19]  Johan Bouma,et al.  Using Soil Survey Data for Quantitative Land Evaluation , 1989 .

[20]  Walter J. Rawls,et al.  Accuracy and reliability of pedotransfer functions as affected by grouping soils , 1999 .

[21]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[22]  Li Ren,et al.  Assessing the Size Dependency of Measured Hydraulic Conductivity Using Double-Ring Infiltrometers and Numerical Simulation , 2007 .

[23]  Budiman Minasny,et al.  Comparison of different approaches to the development of pedotransfer functions for water-retention curves , 1999 .

[24]  Harry Vereecken,et al.  ESTIMATING THE SOIL MOISTURE RETENTION CHARACTERISTIC FROM TEXTURE, BULK DENSITY, AND CARBON CONTENT , 1989 .

[25]  H. Medina,et al.  Functional evaluation of PTF prediction uncertainty: An application at hillslope scale , 2010 .

[26]  Dominique Arrouays,et al.  Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. , 2009 .

[27]  Harry Vereecken,et al.  Towards Retrieving Soil Hydraulic Properties by Hyperspectral Remote Sensing , 2015 .

[28]  Michael Carter,et al.  Correlations of Soil Properties , 1991 .

[29]  Bhavna Arora,et al.  An integrated Markov chain Monte Carlo algorithm for upscaling hydrological and geochemical parameters from column to field scale. , 2015, The Science of the total environment.

[30]  Randal D. Koster,et al.  An updated treatment of soil texture and associated hydraulic properties in a global land modeling system , 2014 .

[31]  Costanza Calzolari,et al.  A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale , 2016 .

[32]  G. Richter,et al.  Pedotransfer functions for estimating total soil nitrogen up to the global scale , 2011 .

[33]  X. Wang,et al.  Accounting for Conceptual Soil Erosion and Sediment Yield Modeling Uncertainty in the APEX Model Using Bayesian Model Averaging , 2015 .

[34]  Marcel G. Schaap,et al.  Description of the unsaturated soil hydraulic database UNSODA version 2.0 , 2001 .

[35]  Jan De Pue,et al.  Hierarchical Pedotransfer Functions to Predict Bulk Density of Highly Weathered Soils in Central Africa , 2015 .

[36]  N. Giesen,et al.  Scale effects in Hortonian surface runoff on agricultural slopes in West Africa: Field data and models , 2011 .

[37]  D. Timlin,et al.  Ensemble Approach to Provide Uncertainty Estimates of Soil Bulk Density , 2010 .

[38]  Niels H. Batjes,et al.  Development of a world data set of soil water retention properties using pedotransfer rules , 1996 .

[39]  Yakov A. Pachepsky,et al.  Modeling local control effects on the temporal stability of soil water content , 2013 .

[40]  J. Williams,et al.  Hydraulic conductivity of saprolite as a function of sample dimensions and measurement technique , 1995 .

[41]  Estimating Topsoil Water Content of Clay Soils With Data From Time-Lapse Electrical Conductivity Surveys , 2012 .

[42]  Yakov A. Pachepsky,et al.  USING FIELD TOPOGRAPHIC DESCRIPTORS TO ESTIMATE SOIL WATER RETENTION , 2002 .

[43]  M. S. M. Amin,et al.  Pedo-transfer function for saturated hydraulic conductivity of lowland paddy soils , 2009, Paddy and Water Environment.

[44]  Walter J. Rawls,et al.  Field‐Scale Water Flow Simulations Using Ensembles of Pedotransfer Functions for Soil Water Retention , 2006 .

[45]  G. Tóth,et al.  Water Retention of Salt-Affected Soils: Quantitative Estimation Using Soil Survey Information , 2012 .

[46]  Karl Auerswald,et al.  Regionalization of soil water retention curves in a highly variable soilscape, II. Comparison of regionalization procedures using a pedotransfer function , 1997 .

[47]  Diederik Jacques,et al.  Multimodel Simulation of Water Flow in a Field Soil Using Pedotransfer Functions , 2009 .

[48]  D. L. Brakensiek,et al.  Estimation of Soil Water Properties , 1982 .

[49]  R. T. Walczak,et al.  Using Support Vector Machines to Develop Pedotransfer Functions for Water Retention of Soils in Poland , 2008 .

[50]  M. Homaee,et al.  Deriving and validating pedotransfer functions for some calcareous soils , 2011 .

[51]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[52]  M. Schaap,et al.  ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions , 2001 .

[53]  Yakov A. Pachepsky,et al.  USING THE NRCS NATIONAL SOILS INFORMATION SYSTEM (NASIS) TO PROVIDE SOIL HYDRAULIC PROPERTIES FOR ENGINEERING APPLICATIONS , 2007 .

[54]  Pascal Boeckx,et al.  Validation of DNDC for 22 long-term N2O field emission measurements , 2007 .

[55]  Gergely Tóth,et al.  Role of soil properties in water retention characteristics of main Hungarian soil types , 2014 .

[56]  Faruque A. Khan,et al.  Modeling leaching of viruses by the Monte Carlo method. , 2003, Water research.

[57]  G. Tóth,et al.  New generation of hydraulic pedotransfer functions for Europe , 2014, European journal of soil science.

[58]  M. V. Genuchten,et al.  Using Texture and Other Soil Properties to Predict the Unsaturated Soil Hydraulic Functions , 1988 .

[59]  H. Vereecken,et al.  Effects of Soil Hydraulic Properties on the Spatial Variability of Soil Water Content: Evidence from Sensor Network Data and Inverse Modeling , 2014 .

[60]  Wilfried Brutsaert,et al.  PROBABILITY LAWS FOR PORE-SIZE DISTRIBUTIONS , 1966 .

[61]  Walter J. Rawls,et al.  Probabilistic Approach to the Identification of Input Variables to Estimate Hydraulic Conductivity , 2008 .

[62]  L. Weihermüller,et al.  Simple pedotransfer functions to initialize reactive carbon pools of the RothC model , 2013 .

[63]  I. Matyasovszky,et al.  Sensitivity of MM5-simulated planetary boundary layer height to soil dataset: comparison of soil and atmospheric effects , 2012, Theoretical and Applied Climatology.

[64]  Yakov A. Pachepsky,et al.  Measurement Scale Effect on Prediction of Soil Water Retention Curve and Saturated Hydraulic Conductivity , 2015, ArXiv.

[65]  Y. Pachepsky,et al.  Data Assimilation with Soil Water Content Sensors and Pedotransfer Functions in Soil Water Flow Modeling , 2012 .

[66]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[67]  H. L. Shantz,et al.  The Wilting Coefficient and Its Indirect Determination , 1912, Botanical Gazette.

[68]  András Makó,et al.  Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions , 2010 .

[69]  Walter J. Rawls,et al.  Estimating Soil Water Retention from Soil Physical Properties and Characteristics , 1991 .

[70]  L. Ahuja,et al.  Use of Brooks-Corey Parameters to Improve Estimates of Saturated Conductivity from Effective Porosity , 1999 .

[71]  J. Wösten,et al.  Development and use of a database of hydraulic properties of European soils , 1999 .

[72]  Baoyuan Liu,et al.  Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling , 2013 .

[73]  Daniel R. Hirmas,et al.  Relationships between soil organic carbon and precipitation along a climosequence in loess-derived soils of the Central Great Plains, USA , 2015 .

[74]  Wojciech Skierucha,et al.  Modelling Soil Water Retention Using Support Vector Machines with Genetic Algorithm Optimisation , 2014, TheScientificWorldJournal.

[75]  Ming Ye,et al.  Quantification of uncertainty in pedotransfer function‐based parameter estimation for unsaturated flow modeling , 2009 .

[76]  V. Snow,et al.  Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils , 2013 .

[77]  M. Schaap,et al.  Neural network analysis for hierarchical prediction of soil hydraulic properties , 1998 .

[78]  Cathy A. Seybold,et al.  Predicting soil bulk density for incomplete databases , 2014 .