Empowering the electric grid: Can SMES coupled to wind turbines improve grid stability?

[1]  Tore Undeland,et al.  Power Electronics: Converters, Applications and Design , 1989 .

[2]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[3]  Martin N. Wilson,et al.  Case studies in superconducting magnets: Yukikazu Iwasa , 1996 .

[4]  Rebecca J. Barthelmie,et al.  Meteorological aspects of offshore wind energy: Observations from the Vindeby wind farm , 1996 .

[5]  Akinobu Murata,et al.  Electrical energy storage systems for energy networks , 2000 .

[6]  N. H. Clark,et al.  Technologies for energy storage. Flywheels and super conducting magnetic energy storage , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[7]  E. Acha,et al.  Modeling and Analysis of Custom Power Systems by PSCAD/EMTDC , 2001, IEEE Power Engineering Review.

[8]  M. Iwakuma,et al.  Design study of a 1 GJ class HTS-SMES (1): Conceptual design of a magnet system , 2001 .

[9]  Wind Energy Explained: Theory, Design and Application , 2002 .

[10]  Vladislav Akhmatov Variable-Speed Wind Turbines with Doubly-Fed Induction Generators Part III: Model with the Back-to-back Converters , 2003 .

[11]  H. Suo,et al.  Processing of low Tc conductors: The compound MgB2 , 2003 .

[12]  J. Hull Applications of high-temperature superconductors in power technology , 2003 .

[13]  S. Nagaya,et al.  Development of MJ-class HTS SMES for bridging instantaneous voltage dips , 2004, IEEE Transactions on Applied Superconductivity.

[14]  H. Kitaguchi,et al.  Superconducting and mechanical performance and the strain effects of a multifilamentary MgB2/Ni tape , 2005 .

[15]  M. J. Khan,et al.  Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system , 2005 .

[16]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[17]  Septimus van der Linden,et al.  Bulk energy storage potential in the USA, current developments and future prospects , 2006 .

[18]  Joseph F. DeCarolis,et al.  The economics of large-scale wind power in a carbon constrained world , 2006 .

[19]  M. Tomsic,et al.  Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method , 2007 .

[20]  Jeffery B. Greenblatt,et al.  Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation , 2007 .

[21]  C. Rehtanz,et al.  New types of FACTS-devices for power system security and efficiency , 2007, 2007 IEEE Lausanne Power Tech.

[22]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[23]  Hamidreza Zareipour,et al.  Energy storage for mitigating the variability of renewable electricity sources: An updated review , 2010 .

[24]  D. Connolly A Review of Energy Storage Technologies: For the integration of fluctuating renewable energy , 2010 .

[25]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[26]  M. Tomsic,et al.  ${\rm MgB}_{2}$ for MRI Magnets: Test Coils and Superconducting Joints Results , 2012, IEEE Transactions on Applied Superconductivity.

[27]  R. Gehring,et al.  LIQHYSMES—A 48 GJ Toroidal MgB2-SMES for Buffering Minute and Second Fluctuations , 2013, IEEE Transactions on Applied Superconductivity.

[28]  D. Shaw,et al.  Stability of a Wind Farm with Superconducting Magnetic Energy Storage , 2014 .

[29]  Y. Xin,et al.  Integrated SMES Technology for Modern Power System and Future Smart Grid , 2014, IEEE Transactions on Applied Superconductivity.