Status of the Transneptunian Automated Occultation Survey (TAOS II)

The Transneptunian Automated Occultation Survey (TAOS II) will aim to detect occultations of stars by small (~1 km diameter) objects in the Kuiper Belt and beyond. Such events are very rare (< 10−3 events per star per year) and short in duration (~200 ms), so many stars must be monitored at a high readout cadence. TAOS II will operate three 1.3 meter telescopes at the Observatorio Astronómico Nacional at San Pedro Mártir in Baja California, México. With a 2.3 square degree field of view and a high speed camera comprising CMOS imagers, the survey will monitor 10,000 stars simultaneously with all three telescopes at a readout cadence of 20 Hz. Construction of the site began in the fall of 2013, and the survey will begin in the summer of 2017.

[1]  S. Kenyon,et al.  The Size Distribution of Kuiper Belt Objects , 2004, astro-ph/0406556.

[2]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[3]  Chih-Yuan Liu,et al.  Millisecond dip events in the 2007 RXTE/PCA data of Sco X—1 and the trans-Neptunian object size distribution , 2008, 0805.1579.

[4]  Asantha Cooray,et al.  Kuiper Belt Object Sizes and Distances from Occultation Observations , 2003, astro-ph/0304396.

[5]  Shiang-Yu Wang,et al.  A 9 megapixel large-area back-thinned CMOS sensor with high sensitivity and high frame-rate for the TAOS II program , 2016, Astronomical Telescopes + Instrumentation.

[6]  Philip Muirhead,et al.  MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS , 2012, 1210.8155.

[7]  B. McLeod,et al.  A SEARCH FOR OCCULTATIONS OF BRIGHT STARS BY SMALL KUIPER BELT OBJECTS USING MEGACAM ON THE MMT , 2009, 0903.3036.

[8]  Cesar I. Fuentes,et al.  A SUBARU ARCHIVAL SEARCH FOR FAINT TRANS-NEPTUNIAN OBJECTS , 2008 .

[9]  Chih-Yuan Liu,et al.  Millisecond dips in the RXTE/PCA light curve of Sco X-1 and trans-Neptunian object occultation , 2007 .

[10]  H.-C. Lin,et al.  Upper Limits on the Number of Small Bodies in Sedna-Like Orbits by the TAOS Project , 2009 .

[11]  Scott J. Kenyon,et al.  RAPID FORMATION OF ICY SUPER-EARTHS AND THE CORES OF GAS GIANT PLANETS , 2008, 0811.4665.

[12]  Françoise Roques Research of Small Kuiper Belt Objects by Stellar Occultations , 2003 .

[13]  J. J. Kavelaars,et al.  A SEARCH FOR SUB-km KUIPER BELT OBJECTS WITH THE METHOD OF SERENDIPITOUS STELLAR OCCULTATIONS , 2008, 0801.2969.

[14]  Jack Wisdom,et al.  Dynamical Stability in the Outer Solar System and the Delivery of Short Period Comets , 1993 .

[15]  M. J. Lehner,et al.  THE TAOS PROJECT: RESULTS FROM SEVEN YEARS OF SURVEY DATA , 2013, 1301.6182.

[16]  S. Alan Stern,et al.  On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt. , 1996 .

[17]  Steven Bickerton,et al.  KUIPER BELT OBJECT OCCULTATIONS: EXPECTED RATES, FALSE POSITIVES, AND SURVEY DESIGN , 2009 .

[18]  B. Sicardy,et al.  Stellar occultations by small bodies - Diffraction effects , 1987 .

[19]  M. Moncuquet,et al.  A Detection Method for Small Kuiper Belt Objects: The Search for Stellar Occultations , 2000 .

[20]  S. Kenyon,et al.  Gravitational Stirring in Planetary Debris Disks , 2000, astro-ph/0009185.

[21]  H.-C. Lin,et al.  First Results from the Taiwanese-American Occultation Survey (TAOS) , 2008 .

[22]  P. A. Price,et al.  SEARCHING FOR SUB-KILOMETER TRANS-NEPTUNIAN OBJECTS USING PAN-STARRS VIDEO MODE LIGHT CURVES: PRELIMINARY STUDY AND EVALUATION USING ENGINEERING DATA , 2009, 0910.5598.

[23]  Re'em Sari,et al.  Shaping the Kuiper belt size distribution by shattering large but strengthless bodies , 2005 .

[24]  David Jewitt,et al.  Kuiper Belt Objects: Relics from the Accretion Disk of the Sun , 2002 .

[25]  Vipul M Mishra,et al.  Editorial Correspondence , 1878, The American journal of dental science.

[26]  Adriano Campo Bagatin,et al.  Collisional evolution of Trans-Neptunian populations: Effects of fragmentation physics and estimates of the abundances of gravitational aggregates , 2009 .

[27]  J. R. Donnison The size distribution of trans-Neptunian bodies , 2006 .

[28]  W. C. Fraser,et al.  THE SIZE DISTRIBUTION OF KUIPER BELT OBJECTS FOR D ≳ 10 km , 2008, 0810.2296.

[29]  W. C. Fraser,et al.  A derivation of the luminosity function of the Kuiper belt from a broken power-law size distribution , 2008, 0809.0313.

[30]  Rachel L. Webster,et al.  Occultations by Kuiper belt objects , 1997 .

[31]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt II. Fragmentation , 1999 .

[32]  John C. Geary,et al.  Status of the Transneptunian Automated Occultation Survey (TAOS II) , 2018, Astronomical Telescopes + Instrumentation.

[33]  Scott J. Kenyon,et al.  Accretion in the Early Outer Solar System , 1999 .

[34]  Asantha Cooray,et al.  Occultation Searches for Kuiper Belt Objects , 2003, astro-ph/0302160.

[35]  Stephen M. Amato,et al.  Characteristic of e2v CMOS sensors for astronomical applications , 2013, Astronomical Telescopes and Instrumentation.

[36]  M. J. Lehner,et al.  The TAOS Project: Statistical Analysis of Multi-Telescope Time Series Data , 2010 .

[37]  W. P. Chen,et al.  THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM , 2010, 1001.2006.

[38]  Paolo Farinella,et al.  Collisional Evolution of Edgeworth–Kuiper Belt Objects , 1997 .

[39]  Lupin Chun-Che Lin,et al.  Occultation of X-rays from Scorpius X-1 by small trans-neptunian objects , 2006, Nature.

[40]  Stephen M. Amato,et al.  The prototype cameras for trans-Neptunian automatic occultation survey , 2016, Astronomical Telescopes + Instrumentation.

[41]  Kathryn Volk,et al.  The Scattered Disk as the Source of the Jupiter Family Comets , 2008, 0802.3913.

[42]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[43]  Hans Rickman,et al.  Nuclear magnitudes and the size distribution of Jupiter family comets , 2006 .

[44]  Michael G. Richer,et al.  Site testing at san Pedro Mártir , 2007 .

[45]  M. Bailey Can ‘invisible’ bodies be observed in the Solar System? , 1976, Nature.

[46]  Matthew J. Holman,et al.  A SUBARU PENCIL-BEAM SEARCH FOR mR ∼ 27 TRANS-NEPTUNIAN BODIES , 2008, 0809.4166.

[47]  E. Ofek,et al.  A single sub-kilometre Kuiper belt object from a stellar occultation in archival data , 2009, Nature.

[48]  Harold F. Levison,et al.  The Dynamical Structure of the Kuiper Belt , 1995 .

[49]  H.-C. Lin,et al.  The Taiwanese-American Occultation Survey: The Multi-Telescope Robotic Observatory , 2008, 0802.0303.

[50]  Astrophysics,et al.  Detectability of Occultations of Stars by Objects in the Kuiper Belt and Oort Cloud , 2007, The Astronomical Journal.

[51]  V. S. Dhillon,et al.  Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results , 2006 .

[52]  Alessandro Morbidelli,et al.  Chaotic Diffusion and the Origin of Comets from the 2/3 Resonance in the Kuiper Belt , 1997 .