Gap and channeled plasmons in tapered grooves: a review.

Tapered metallic grooves have been shown to support plasmons - electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces - across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channeled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment of unique properties that are highly suited to a broad range of cutting-edge nanoplasmonic technologies, including ultracompact photonic circuits, quantum-optics components, enhanced lab-on-a-chip devices, efficient light-absorbing surfaces and advanced optical filters, while additionally affording a niche platform to explore the fundamental science of plasmon excitations and their interactions. In this Review, we provide a research status update of plasmons in tapered grooves, starting with a presentation of the theory and important features of GSPs and CPPs, and follow with an overview of the broad range of applications they enable or improve. We cover the techniques that can fabricate tapered groove structures, in particular highlighting wafer-scale production methods, and outline the various photon- and electron-based approaches that can be used to launch and study GSPs and CPPs. We conclude with a discussion of the challenges that remain for further developing plasmonic tapered-groove devices, and consider the future directions offered by this select yet potentially far-reaching topic area.

[1]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[2]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[3]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[4]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[5]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[6]  A. Jauho,et al.  Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS , 2012, 1210.2535.

[7]  Arun Kumar,et al.  Propagation characteristics of channel plasmon polaritons supported by a dielectric filled trench in a real metal , 2009 .

[8]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[9]  S. Bozhevolnyi,et al.  Surface-plasmon polariton resonances in triangular-groove metal gratings , 2009 .

[10]  T. Ebbesen,et al.  Plasmonic photon sorters for spectral and polarimetric imaging , 2008 .

[11]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[12]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[13]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[14]  Sergey I. Bozhevolnyi,et al.  Nanofocusing of electromagnetic radiation , 2013, Nature Photonics.

[15]  J. Silcox,et al.  Measurement of surface-plasmon dispersion in oxidized aluminum films , 1975 .

[16]  Dmitri K. Gramotnev,et al.  Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate , 2007 .

[17]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[18]  S. Papaioannou,et al.  A 320 Gb/s-Throughput Capable 2 $\,\times\,$2 Silicon-Plasmonic Router Architecture for Optical Interconnects , 2011, Journal of Lightwave Technology.

[19]  A. Kristensen,et al.  Efficient Excitation of Channel Plasmons in Tailored, UV-Lithography-Defined V-Grooves , 2014, Nano letters.

[20]  Dries Vercruysse,et al.  Unidirectional side scattering of light by a single-element nanoantenna. , 2013, Nano letters.

[21]  Alexandra Boltasseva,et al.  Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. , 2008, Optics express.

[22]  Byoungho Lee,et al.  Plasmonic Nanostructures for Nano-Scale Bio-Sensing , 2011, Sensors.

[23]  Michal Lipson,et al.  Subwavelength confinement in an integrated metal slot waveguide on silicon. , 2006, Optics letters.

[24]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[25]  N. Mortensen,et al.  Nonlocal optical response in metallic nanostructures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Sergey I. Bozhevolnyi,et al.  Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity , 2013, 1305.1185.

[27]  Bing Wang,et al.  Surface plasmon polariton propagation in nanoscale metal gap waveguides. , 2004, Optics letters.

[28]  A. H. Rose,et al.  Nanoscope based on nanowaveguides. , 2014, Optics express.

[29]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[30]  Steven T. Wereley,et al.  Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. , 2014, ACS nano.

[31]  A. Kristensen,et al.  Excitation of fluorescent nanoparticles by channel plasmon polaritons propagating in V-grooves , 2009 .

[32]  Nikolay I Zheludev,et al.  Continuous metal plasmonic frequency selective surfaces. , 2011, Optics express.

[33]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[34]  Zheng Zheng,et al.  Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement. , 2011, Optics express.

[35]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[36]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[37]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[38]  Chunlei Guo,et al.  Enhanced absorptance of gold following multipulse femtosecond laser ablation , 2005 .

[39]  T. Søndergaard,et al.  Modeling the reflectivity of plasmonic ultrasharp groove arrays: general direction of light incidence , 2014 .

[40]  J. Pendry,et al.  Collection and concentration of light by touching spheres: a transformation optics approach. , 2010, Physical review letters.

[41]  A. Polman,et al.  Broadband Purcell enhancement in plasmonic ring cavities , 2010 .

[42]  D. F. Ogletree,et al.  Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. , 2013, Nano letters.

[43]  Sergey I. Bozhevolnyi,et al.  Extraordinary optical transmission enhanced by nanofocusing. , 2010, Nano letters.

[44]  S. Bozhevolnyi,et al.  Efficient channel-plasmon excitation by nano-mirrors , 2011 .

[45]  Laurens Kuipers,et al.  Mapping nanoscale light fields , 2014, Nature Photonics.

[46]  Vladimir M. Shalaev,et al.  Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited] , 2015 .

[47]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[48]  S. Bozhevolnyi,et al.  Ultrafocusing of surface plasmon-polariton in a narrowing concave gap , 2010 .

[49]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[50]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[51]  Asger Vig Larsen,et al.  Technology for Fabrication of Nanostructures by Standard Cleanroom Processing and Nanoimprint Lithography , 2005 .

[52]  F. García-Vidal,et al.  Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. , 2010, Nano letters.

[53]  Masanobu Haraguchi,et al.  Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding , 2005 .

[54]  Eyal Feigenbaum,et al.  Synthesis and characterization of plasmonic resonant guided wave networks. , 2014, Nano letters.

[55]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[56]  Dmitri K. Gramotnev,et al.  Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach , 2005 .

[57]  Shailesh Kumar,et al.  Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. , 2010, Physical review letters.

[58]  T. Ebbesen,et al.  Channelling surface plasmons , 2007 .

[59]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[60]  Jacob B. Khurgin,et al.  Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes , 2014, Nature Photonics.

[61]  Lei Liu,et al.  Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove , 2013 .

[62]  Dmitri K. Gramotnev,et al.  Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides , 2006 .

[63]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[64]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[65]  Eloïse Devaux,et al.  Wavelength selective nanophotonic components utilizing channel plasmon polaritons. , 2007, Nano letters.

[66]  William L. Schaich,et al.  Narrow-band, tunable infrared emission from arrays of microstrip patches , 2008 .

[67]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[68]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[69]  Mark L. Brongersma,et al.  Electrically driven subwavelength optical nanocircuits , 2014, Nature Photonics.

[70]  D. F. Ogletree,et al.  Life Beyond Diffraction: Opening New Routes to Materials Characterization with Next‐Generation Optical Near‐Field Approaches , 2013 .

[71]  Viktor Malyarchuk,et al.  High performance plasmonic crystal sensor formed by soft nanoimprint lithography. , 2005, Optics express.

[72]  A. Kristensen,et al.  V-groove plasmonic waveguides fabricated by nanoimprint lithography , 2007 .

[73]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[74]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[75]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[76]  Channel plasmon-polariton modes in V grooves filled with dielectric , 2008 .

[77]  W. Burns,et al.  Mode dispersion in diffused channel waveguides by the effective index method. , 1977, Applied optics.

[78]  S. Xiao,et al.  Nonlocal response in plasmonic waveguiding with extreme light confinement , 2012, 1212.4925.

[79]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2014, Nature Communications.

[80]  Anders Kristensen,et al.  Channel plasmon polariton propagation in nanoimprinted V-groove waveguides. , 2008, Optics letters.

[81]  S. Bozhevolnyi,et al.  Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves , 2014, Scientific Reports.

[82]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[83]  José Dintinger,et al.  Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness. , 2009, Optics express.

[84]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[85]  V. Podolskiy,et al.  Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. , 2007, Optics express.

[86]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[87]  A. H. Pfund The Optical Properties of Metallic and Crystalline Powders , 1933 .

[88]  Kh. V. Nerkararyan,et al.  Superfocusing of a surface polariton in a wedge-like structure , 1997 .

[89]  Eloïse Devaux,et al.  Compact gradual bends for channel plasmon polaritons. , 2006, Optics express.

[90]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[91]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[92]  C. Geddes,et al.  Plasmonics , 2018, An Introduction to Metamaterials and Nanophotonics.

[93]  L. Sorba,et al.  Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution , 2014 .

[94]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[95]  T. Ebbesen,et al.  Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders , 2012 .

[96]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[97]  Lukas Novotny,et al.  Electrical excitation of surface plasmons. , 2011, Physical review letters.

[98]  Shima Kadkhodazadeh,et al.  Extremely confined gap surface-plasmon modes excited by electrons , 2013, Nature Communications.

[99]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[100]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[101]  Nikolay I. Zheludev,et al.  Optical response of plasmonic relief meta-surfaces , 2012 .

[102]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[103]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[104]  S. Kawata,et al.  Nano‐imaging through tip‐enhanced Raman spectroscopy: Stepping beyond the classical limits , 2009 .

[105]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[106]  L Martin-Moreno,et al.  Channel plasmon-polaritons: modal shape, dispersion, and losses. , 2006, Optics letters.

[107]  S. Bozhevolnyi,et al.  Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves , 2013 .

[108]  J. F. Löffler,et al.  Metal direct nanoimprinting for photonics , 2008 .

[109]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[110]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[111]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves , 2013 .

[112]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[113]  Sergey I. Bozhevolnyi,et al.  Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films , 2011 .

[114]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[115]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[116]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[117]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[118]  Nader A. Issa,et al.  Optical Nanofocusing on Tapered Metallic Waveguides , 2007 .

[119]  Shi-Wei Qu,et al.  Plasmonic nanopatch array for optical integrated circuit applications , 2013, Scientific Reports.

[120]  T. Ebbesen,et al.  Directional coupling in channel plasmon-polariton waveguides. , 2012, Optics express.

[121]  Jacob B Khurgin,et al.  Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011 .

[122]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[123]  Yi Xiong,et al.  Two-dimensional imaging by far-field superlens at visible wavelengths. , 2007, Nano letters.

[124]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[125]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[126]  Masashi Watanabe,et al.  Mapping surface plasmons at the nanometre scale with an electron beam , 2007 .

[127]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[128]  E. Economou Surface Plasmons in Thin Films , 1969 .

[129]  J. Gilman,et al.  Nanotechnology , 2001 .

[130]  A. Kristensen,et al.  Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography. , 2012, Optics express.

[131]  D. Gramotnev,et al.  Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing , 2011 .

[132]  S. Xiao,et al.  Surface-enhanced Raman spectroscopy: nonlocal limitations. , 2012, Optics letters.

[133]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[134]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[135]  Xiang Zhang,et al.  Compressing surface plasmons for nano-scale optical focusing. , 2009, Optics express.

[136]  S. Xiao,et al.  Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits , 2008, 0806.2534.

[137]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[138]  L. Novotný,et al.  Antennas for light , 2011 .

[139]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[140]  Martijn Wubs,et al.  Surface plasmon modes of a single silver nanorod: an electron energy loss study. , 2011, Optics express.

[141]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[142]  J. Khurgin,et al.  The case for using gap plasmon-polaritons in second-order optical nonlinear processes. , 2012, Optics express.

[143]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[144]  J. Melngailis Focused ion beam technology and applications , 1987 .

[145]  Harald Giessen,et al.  Three-Dimensional Plasmon Rulers , 2011, Science.

[146]  Domenico Pacifici,et al.  Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. , 2012, Nano letters.

[147]  Alexandra Boltasseva,et al.  Plasmonic components fabrication via nanoimprint , 2009 .

[148]  Uriel Levy,et al.  Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide , 2010 .

[149]  Sangin Kim,et al.  Long-range channel plasmon polaritons in thin metal film V-grooves. , 2011, Optics express.

[150]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[151]  Harry A. Atwater The promise of plasmonics. , 2007 .

[152]  A. Polman,et al.  Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy , 2009 .

[153]  Dang Yuan Lei,et al.  Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain. , 2014, Nanoscale.

[154]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[155]  Martin L. Kurth,et al.  Coupling of energy from quantum emitters to the plasmonic mode of V groove waveguides: A numerical study , 2012 .

[156]  Zhanghua Han,et al.  Radiation guiding with surface plasmon polaritons , 2013, Reports on progress in physics. Physical Society.

[157]  H. Lezec,et al.  Highly confined photon transport in subwavelength metallic slot waveguides. , 2006, Nano letters.

[158]  U. Andersen,et al.  Efficient coupling of a single diamond color center to propagating plasmonic gap modes. , 2013, Nano letters.

[159]  D. Pile,et al.  Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .

[160]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[161]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[162]  Philippe Lalanne,et al.  Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. , 2011, Nano letters.

[163]  N. Engheta,et al.  Guidance Properties of Plasmonic Nanogrooves: Comparison Between the Effective Index Method and the Finite Integration Technique , 2011, IEEE Antennas and Wireless Propagation Letters.

[164]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[165]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[166]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[167]  G. Veronis,et al.  Guided subwavelength plasmonic mode supported by a slot in a thin metal film. , 2005, Optics letters.

[168]  S. Bozhevolnyi,et al.  Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons. , 2011, Optics letters.

[169]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[170]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[171]  Dmitri K. Gramotnev,et al.  Adiabatic nano-focusing of plasmons by sharp metallic wedges , 2006 .

[172]  Tatsuhiko Sugiyama,et al.  Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. , 2005, Optics express.

[173]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[174]  S. Bozhevolnyi,et al.  Channel plasmon polaritons guided by graded gaps: closed-form solutions. , 2009, Optics express.

[175]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[176]  Jacob B Khurgin How to deal with the loss in plasmonics and metamaterials. , 2015, Nature nanotechnology.

[177]  A. Boccara,et al.  Plasmonic Nanofocusing of Light in an Integrated Silicon Photonics Platform , 2022 .

[178]  Mohammad S. M. Saifullah,et al.  Metal hierarchical patterning by direct nanoimprint lithography , 2013, Scientific Reports.

[179]  T. Ebbesen,et al.  Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons , 2009 .

[180]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[181]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[182]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[183]  Thomas Søndergaard,et al.  Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves , 2012, Nature Communications.

[184]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[185]  M. Mozek,et al.  The role of Triton surfactant in anisotropic etching of {1 1 0} reflective planes on (1 0 0) silicon , 2005 .

[186]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[187]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[188]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[189]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[190]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[191]  Daniel Courjon,et al.  History of Near-field Optics , 2003 .

[192]  Valentyn S. Volkov,et al.  Bend loss for channel plasmon polaritons , 2006 .

[193]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[194]  Peter Nordlander,et al.  A single molecule immunoassay by localized surface plasmon resonance , 2010, Nanotechnology.

[195]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[196]  E. Moreno,et al.  Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides , 2011 .

[197]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[198]  S. Bozhevolnyi,et al.  Analytic description of channel plasmon polaritons. , 2009, Optics letters.

[199]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[200]  T. Ebbesen,et al.  Resonant plasmon nanofocusing by closed tapered gaps. , 2010, Nano letters.

[201]  S. Bozhevolnyi Effective-index modeling of channel plasmon polaritons. , 2006, Optics express.

[202]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[203]  Min Qiu,et al.  Guided plasmon polariton at 2D metal corners , 2007 .

[204]  Jesper Jung,et al.  Scaling for gap plasmon based waveguides. , 2008, Optics express.

[205]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[206]  S. Bozhevolnyi,et al.  Adiabatic nanofocusing of channel plasmon polaritons. , 2010, Optics letters.

[207]  A. Zayats,et al.  Nano‐opto‐mechanical effects in plasmonic waveguides , 2014 .

[208]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[209]  D. Pile,et al.  Plasmonic subwavelength waveguides: next to zero losses at sharp bends. , 2005, Optics letters.

[210]  Luis Martín-Moreno,et al.  Nanofocusing with channel plasmon polaritons. , 2009, Nano letters.

[211]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[212]  T. Ebbesen,et al.  Dispersion of strongly confined channel plasmon polariton modes , 2011 .

[213]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[214]  Chunlei Guo,et al.  Femtosecond laser blackening of platinum , 2008 .

[215]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[216]  S. Bozhevolnyi Plasmonic nanoguides and circuits , 2008 .