Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+ Na+, K+, Rb+ and Cs+-Exchanged Forms

Methods previously used to distinguish between water adsorbed on external surfaces and in the interlamellar space of Na-montmorillonite during adsorption and desorption of water vapor have been extended to a set of homoionic Li-, Na-, K-, Rb- and Cs-montmorillonite. The textural and structural features have been investigated at different stages of hydration and dehydration using controlled-rate thermal analysis, nitrogen adsorption volumetry, water adsorption gravimetry, immersion microcalorimetry and X-ray powder diffraction under controlled humidity conditions. During hydration, the size of the quasi-crystals decreases from 33 layers to 8 layers for Na-montmorillonite and from 25 layers to 10 layers for K-montmorillonite, but remains stable around 8–11 layers for Cs-montmorillonite. Each homoionic species leads to a one-layer hydrate, which starts forming at specific values of water vapor relative pressure. Li-, Na- and K-montmorillonite can form a two-layer hydrate. By comparing experimental X-ray diffraction patterns with theoretically simulated ones, the evolution of structural characteristics of montmorillonites during hydration or desorption can be described. Using structural and textural data, it is shown that during adsorption: (1) the rate of filling of interlamellar space of the one layer hydrate increases with the relative pressure but decreases with the size of the cations; and (2) the different hydrated states are never homogeneous.

[1]  Jean-Maurice Cases,et al.  Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form , 1992 .

[2]  F. Thomas,et al.  Fluid-Swelling Clays Interaction , 1992 .

[3]  W. R. Whalley,et al.  Effect of saturating cation on tactoid size distribution in bentonite suspensions , 1991, Clay Minerals.

[4]  M. Kawano,et al.  X-Ray Powder Diffraction Studies on the Rehydration Properties of Beidellite , 1991 .

[5]  J. Rouquerol Controlled transformation rate thermal analysis: the hidden face of thermal analysis , 1989 .

[6]  J. Rouquerol,et al.  Modification of the Porous Structure and Surface Area of Sepiolite under Vacuum Thermal Treatment , 1988 .

[7]  T. Iwasaki,et al.  Distribution of Ca and Na Ions in Dioctahedral Smectites and Interstratified Dioctahedral Mica/Smectites , 1988 .

[8]  H. Pezerat,et al.  Parameters Influencing Layer Stacking Types in Saponite and Vermiculite: A Review , 1987 .

[9]  H. Stoeckli,et al.  Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: I. Micropore volumes and internal surface areas, following Dubinin's theory , 1987, Clay Minerals.

[10]  J. Hower,et al.  Ordered Interstratification of Dehydrated and Hydrated Na-Smectite , 1986 .

[11]  G. Besson,et al.  Methode diffractometrique de caracterisation des états d'hydratation des smectites stabilité relative des couches d'eau inserées , 1986, Clay Minerals.

[12]  G. Besson,et al.  Etude des profils des bandes de diffraction X d'une beidellite-Na hydratée à deux couches d'eau. Détermination du mode d'empilement des feuillets et des sites occupés par l'eau , 1984 .

[13]  Garrison Sposito,et al.  Structure of water adsorbed on smectites , 1982 .

[14]  M. Letellier,et al.  Thermodynamic and microdynamic behavior of water in clay suspensions and gels , 1982 .

[15]  M. Stul,et al.  The texture of montmorillonites as influenced by the exchangeable inorganic cation and the drying method I: External surface area related to the stacking units of the aggregates , 1982 .

[16]  R. Prost,et al.  Etude par spectroscopie infrarouge et diffraction X des interactions eau-cation-feuillet dans les phases a 14.6, 12.2 Et 10.1 Å D'une saponite-Li de synthese , 1982, Clay Minerals.

[17]  L. Schramm,et al.  Influence of Exchangeable Cation Composition on the Size and Shape of Montmorillonite Particles in Dilute Suspension , 1982 .

[18]  K. Sing,et al.  Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional) , 1982 .

[19]  R. Keren,et al.  Water Vapor Isotherms and Heat of Immersion of Na/Ca-Montmorillonite Systems—I: Homoionic Clay , 1975 .

[20]  L. Aylmore,et al.  Domains and Quasi-Crystalline Regions in Clay Systems1 , 1971 .

[21]  Stephen Brunauer,et al.  Pore structure analysis by water vapor adsorption: I. t-Curves for water vapor , 1969 .

[22]  J. Boer,et al.  Thet-curve of multimolecular N2-adsorption , 1966 .

[23]  L. A. Wood,et al.  Adsorption of Water Vapor by Montmorillonite. II. Effect of Exchangeable Ions and Lattice Swelling as Measured by X-Ray Diffraction , 1952 .

[24]  W. D. Harkins,et al.  Surfaces of Solids. XII. An Absolute Method for the Determination of the Area of a Finely Divided Crystalline Solid , 1944 .

[25]  William D. Harkins,et al.  Surfaces of Solids. XIII. A Vapor Adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area, and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid , 1944 .

[26]  H. V. Damme,et al.  La texture fractale des argiles gonflantes , 1990 .

[27]  V. Drits,et al.  X-Ray Diffraction by Disordered Lamellar Structures , 1990 .

[28]  Abdulghani Kerm Etude et caracterisation des premiers stades d'hydratation d'une nontronite , 1988 .

[29]  J. Cases,et al.  Etude des propriétés thermodynamiques de l'eau au voisinage des interfaces , 1982 .

[30]  S. Caillère Minéralogie des argiles. 2, Classification et nomenclature , 1982 .

[31]  R. Thomas,et al.  Small angle neutron scattering from dilute aqueous dispersions of clay , 1980 .

[32]  J. Rouquerol,et al.  Calorimetric determination of surface areas: Possibilities of a modified Harkins and Jura procedure , 1979 .