The electrostatic potential generated by topological atoms. II. Inverse multipole moments.

Quantum chemical topology defines finite atoms, whose bounded electron density generates a well-defined electrostatic potential. A multipole expansion based on spherical tensors provides a potential that is formally convergent outside the divergence sphere. Part I of this series [P. L. A. Popelier and M. Rafat, Chem. Phys. Lett.376, 148 (2003)] showed that a continuous multipole expansion expands the convergence region, thereby allowing the electrostatic potential to be evaluated at short range. Here, we propose a different method, based on "inverse" multipole moments, enabling an expansion that converges everywhere. These moments are defined by inverse (i.e., negative) powers of the magnitude of the position vector describing the electron density inside the atom. We illustrate this technique on nitrogen in N(2), oxygen in H(2)O, and oxygen in the phenolic group of the amino acid tyrosine. The proposed method constitutes a considerable advance over the method presented in Part I.

[1]  Paul L. A. Popelier,et al.  Simulation of liquid water using a high-rank quantum topological electrostatic potential , 2004 .

[2]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[3]  N. Koga,et al.  Quantifying the electronic effect of substituted phosphine ligands via molecular electrostatic potential. , 2002, Inorganic chemistry.

[4]  Benny G. Johnson,et al.  Computing molecular electrostatic potentials with the PRISM algorithm , 1993 .

[5]  Paul L. A. Popelier,et al.  Atomic partitioning of molecular electrostatic potentials , 2000 .

[6]  P. Fowler,et al.  Central or distributed multipole moments? Electrostatic models of aromatic dimers , 1991 .

[7]  R. Bader,et al.  Calculation of the average properties of atoms in molecules. II , 1981 .

[8]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[9]  P. Popelier,et al.  The prediction of energies and geometries of hydrogen bonded DNA base-pairs via a topological electrostatic potential , 2002 .

[10]  Alistair P. Rendell,et al.  The Potassium Ion Channel: Comparison of Linear Scaling Semiempirical and Molecular Mechanics Representations of the Electrostatic Potential , 2001 .

[11]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[12]  W. Sokalski,et al.  Efficient method for the generation and display of electrostatic potential surfaces from ab-initio wavefunctions. , 1991, Journal of molecular graphics.

[13]  J. Reboul,et al.  The molecular electrostatic potential and drug design , 1992 .

[14]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[15]  Raymond A. Poirier,et al.  Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence , 1983 .

[16]  P. Avouris,et al.  Understanding the Variation of the Electrostatic Potential along a Biased Molecular Wire , 2003 .

[17]  P. Popelier,et al.  The electrostatic potential generated by topological atoms: a continuous multipole method leading to larger convergence regions , 2003 .

[18]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[19]  Paul L. A. Popelier,et al.  Convergence of the multipole expansion for electrostatic potentials of finite topological atoms , 2000 .

[20]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[21]  P. Popelier,et al.  The quantum topological electrostatic potential as a probe for functional group transferability. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[22]  Laurent Joubert,et al.  Convergence of the electrostatic interaction based on topological atoms , 2001 .

[23]  N. Koga,et al.  Revisiting Markovnikov addition to alkenes via molecular electrostatic potential. , 2001, The Journal of organic chemistry.

[24]  Mark A. Spackman,et al.  A SIMPLE QUANTITATIVE MODEL OF HYDROGEN-BONDING , 1986 .