Decoding quantum error correction with Ising model hardware

Fault tolerant quantum computers will require efficient co-processors for real-time decoding of their adopted quantum error correction protocols. In this work we examine the possibility of using specialised Ising model hardware to perform this decoding task. Examples of Ising model hardware include quantum annealers such as those produced by D-Wave Systems Inc., as well as classical devices such as those produced by Hitatchi and Fujitsu and optical devices known as coherent Ising machines. We use the coherent parity check (CPC) framework to derive an Ising model mapping of the quantum error correction decoding problem for an uncorrelated quantum error model. A specific advantage of our Ising model mapping is that it is compatible with maximum entropy inference techniques which can outperform maximum likelihood decoding in some circumstances. We use numerical calculations within our framework to demonstrate that maximum entropy decoding can not only lead to improved error suppression, but can also shift threshold values for simple codes. As a high value problem for which a small advantage can lead to major gains, we argue that decoding quantum codes is an ideal use case for quantum annealers. In addition, the structure of quantum error correction codes allows application specific integrated circuit (ASIC) annealing hardware to reduce embedding costs, a major bottleneck in quantum annealing. Finally, we also propose a way in which a quantum annealer could be optimally used as part of a hybrid quantum-classical decoding scheme.

[1]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[2]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[3]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[4]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[5]  H. Nishimori Exact results and critical properties of the Ising model with competing interactions , 1980 .

[6]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[7]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[8]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[9]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[10]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[11]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[12]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[13]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[15]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[16]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[17]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[18]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[19]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[20]  G. Milburn,et al.  Continuous quantum error correction by cooling , 2005, quant-ph/0501038.

[21]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[22]  S. Weinreb,et al.  Design of Cryogenic SiGe Low-Noise Amplifiers , 2007, IEEE Transactions on Microwave Theory and Techniques.

[23]  V. Choi Adiabatic Quantum Algorithms for the NP-Complete MIS, Exact Cover and 3SAT Problems , 2010 .

[24]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[25]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[26]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[27]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[28]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[29]  Fabián A. Chudak,et al.  Experimental determination of Ramsey numbers. , 2012, Physical Review Letters.

[30]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.

[31]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation I: techniques and challenges , 2013, 1307.5893.

[32]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[33]  Gregory E. Coxson,et al.  Adiabatic quantum computing for finding low-peak-sidelobe codes , 2014, 2014 IEEE High Performance Extreme Computing Conference (HPEC).

[34]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[35]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[36]  M. Marzec Portfolio Optimization: Applications in Quantum Computing , 2014 .

[37]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[38]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[39]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[40]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[41]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[42]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[43]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[44]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[45]  M. Benedetti,et al.  Quantum-assisted learning of graphical models with arbitrary pairwise connectivity , 2016, ArXiv.

[46]  Nicholas Chancellor,et al.  Modernizing quantum annealing using local searches , 2016, 1606.06833.

[47]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[48]  Stefan Zohren,et al.  Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture , 2016, 1603.09521.

[49]  Stefan Zohren,et al.  Graphical structures for design and verification of quantum error correction , 2016, Quantum Science and Technology.

[50]  T. Cubitt,et al.  Simple universal models capture all classical spin physics , 2014, Science.

[51]  Andrea Rocchetto,et al.  Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer , 2016, Science Advances.

[52]  T. Monz,et al.  Cryogenic setup for trapped ion quantum computing. , 2016, The Review of scientific instruments.

[53]  P. Zoller,et al.  A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions , 2016, 1604.02359.

[54]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[55]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[56]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[57]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[58]  Walter Vinci,et al.  Maximum-Entropy Inference with a Programmable Annealer , 2015, Scientific Reports.

[59]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[60]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[61]  S. C. Benjamin,et al.  A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph , 2016, Scientific Reports.

[62]  Jiangfeng Du,et al.  High-fidelity adiabatic quantum computation using the intrinsic Hamiltonian of a spin system: Application to the experimental factorization of 291311 , 2017, 1706.08061.

[63]  Edoardo Charbon,et al.  Performance characterization of Altera and Xilinx 28 nm FPGAs at cryogenic temperatures , 2017, 2017 International Conference on Field Programmable Technology (ICFPT).

[64]  Rupak Biswas,et al.  A NASA perspective on quantum computing: Opportunities and challenges , 2017, Parallel Comput..

[65]  Barbara M. Terhal,et al.  Local decoders for the 2D and 4D toric code , 2016, Quantum Inf. Comput..

[66]  M. A. Yurtalan,et al.  Tunable ZZZ Coupler for Quantum Annealing with Superconducting Flux Qubits , 2018 .

[67]  B. Terhal,et al.  Local decoders for the 2D and 4D toric code , 2016, Quantum Inf. Comput..

[68]  Edoardo Charbon,et al.  Cryogenic low-dropout voltage regulators for stable low-temperature electronics , 2018 .

[69]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[70]  Peng Zhao,et al.  Two-Photon Driven Kerr Resonator for Quantum Annealing with Three-Dimensional Circuit QED , 2017, Physical Review Applied.

[71]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[72]  Ken-ichi Kawarabayashi,et al.  Scaling advantages of all-to-all connectivity in physical annealers: the Coherent Ising Machine vs. D-Wave 2000Q , 2018, ArXiv.

[73]  Daniel O'Malley An approach to quantum-computational hydrologic inverse analysis , 2018, Scientific Reports.

[74]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[75]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[76]  R. Orús,et al.  Forecasting financial crashes with quantum computing , 2018, Physical Review A.

[77]  Nikesh S. Dattani,et al.  Quadratization in discrete optimization and quantum mechanics , 2019, ArXiv.

[78]  Stefan Heinen,et al.  Control electronics for semiconductor spin qubits , 2019, Quantum Science and Technology.

[79]  Stefan Zohren,et al.  Quantum Codes From Classical Graphical Models , 2018, IEEE Transactions on Information Theory.