Early Stages of Ultrafast Spin Dynamics in a 3d Ferromagnet.

Prior to the development of pulsed lasers, one assigned a single local temperature to the lattice, the electron gas, and the spins. With the availability of ultrafast laser sources, one can now drive the temperature of these reservoirs out of equilibrium. Thus, the solid shows new internal degrees of freedom characterized by individual temperatures of the electron gas T_{e}, the lattice T_{l} and the spins T_{s}. We demonstrate an analogous behavior in the spin polarization of a ferromagnet in an ultrafast demagnetization experiment: At the Fermi energy, the polarization is reduced faster than at deeper in the valence band. Therefore, on the femtosecond time scale, the magnetization as a macroscopic quantity does not provide the full picture of the spin dynamics: The spin polarization separates into different parts similar to how the single temperature paradigm changed with the development of ultrafast lasers.

[1]  Samuel A. Assefa,et al.  SURF: improving classifiers in production by learning from busy and noisy end users , 2020, ICAIF.

[2]  Mikael Olsson Struct , 2019, C# 8 Quick Syntax Reference.

[3]  M. Cinchetti,et al.  Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt , 2017, Science Advances.

[4]  A. Hendel,et al.  Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution. , 2016, The Review of scientific instruments.

[5]  Y. Acremann,et al.  Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion? , 2016, Structural dynamics.

[6]  S. Nepijko,et al.  Spin texture of time-reversal symmetry invariant surface states on W(110) , 2016, Scientific Reports.

[7]  M. Aeschlimann,et al.  Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation. , 2016, The Review of scientific instruments.

[8]  C. Tusche,et al.  Spin resolved bandstructure imaging with a high resolution momentum microscope. , 2015, Ultramicroscopy.

[9]  B. Koopmans,et al.  Exploring laser-induced interlayer spin transfer by an all-optical method , 2014 .

[10]  Klaus Jansen,et al.  Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers , 2014 .

[11]  Emrah Turgut,et al.  Controlling the competition between optically induced ultrafast spin-flip scattering and spin transport in magnetic multilayers. , 2013, Physical review letters.

[12]  A. Föhlisch,et al.  Ultrafast spin transport as key to femtosecond demagnetization. , 2013, Nature materials.

[13]  Y. Acremann,et al.  Magnetic pulser and sample holder for time- and spin-resolved photoemission spectroscopy on magnetic materials. , 2012, The Review of scientific instruments.

[14]  Z. Ding,et al.  A Monte Carlo study of the spin polarization of secondary electrons , 2012 .

[15]  Justin M. Shaw,et al.  Probing the timescale of the exchange interaction in a ferromagnetic alloy , 2012, Proceedings of the National Academy of Sciences.

[16]  Justin M. Shaw,et al.  Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions , 2012 .

[17]  G. Schönhense,et al.  Highly efficient multichannel spin-polarization detection. , 2011, Physical review letters.

[18]  C. Back,et al.  Ultrafast demagnetization dynamics of thin Fe/W(110) films : Comparison of time- and spin-resolved photoemission with time-resolved magneto-optic experiments , 2011 .

[19]  M. Battiato,et al.  Is the controversy over femtosecond magneto-optics really solved? , 2011 .

[20]  M. Cinchetti,et al.  Driving force of ultrafast magnetization dynamics , 2011, 1108.5170.

[21]  H. Dürr,et al.  Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins , 2011, Nature.

[22]  Y. Acremann,et al.  Fe on W(110), a stable magnetic reference system , 2011 .

[23]  M. Battiato,et al.  Superdiffusive spin transport as a mechanism of ultrafast demagnetization. , 2010, Physical review letters.

[24]  J. Bigot,et al.  Distinguishing the ultrafast dynamics of spin and orbital moments in solids , 2010, Nature.

[25]  M. Cinchetti,et al.  Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. , 2010, Nature materials.

[26]  Martin Aeschlimann,et al.  Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft x-ray source. , 2009, Physical review letters.

[27]  W. Hübner,et al.  Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism , 2009 .

[28]  W. Eberhardt,et al.  Femtosecond modification of electron localization and transfer of angular momentum in nickel. , 2007, Nature materials.

[29]  M. Cinchetti,et al.  Spin-flip processes and ultrafast magnetization dynamics in Co: Unifying the microscopic and macroscopic view of femtosecond magnetism. , 2006, Physical review letters.

[30]  Austria,et al.  Fermi surface and electron correlation effects of ferromagnetic iron , 2005, cond-mat/0501585.

[31]  P. Oppeneer,et al.  Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions , 2004 .

[32]  H. Dürr,et al.  Femtosecond electron and spin dynamics in Ni/W(110) films. , 2003, Physical review letters.

[33]  J. Ferré,et al.  In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers , 2002 .

[34]  Kohlhepp,et al.  Ultrafast magneto-optics in nickel: magnetism or optics? , 2000, Physical review letters.

[35]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[36]  R. A. Tawil,et al.  Energy Bands in Ferromagnetic Iron , 1977 .