The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice.

[1]  M. Yuan,et al.  The key residues of OsTFIIAγ5/Xa5 protein captured by the arginine-rich TFB domain of TALEs compromising rice susceptibility and bacterial pathogenicity , 2019, Journal of Integrative Agriculture.

[2]  Shiping Wang,et al.  TALE‐carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice , 2019, Molecular plant pathology.

[3]  Chunlian Wang,et al.  Rice Routes of Countering Xanthomonas oryzae , 2018, International journal of molecular sciences.

[4]  J. Alfano,et al.  Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice , 2018, Molecular plant pathology.

[5]  Álvaro L. Pérez-Quintero,et al.  Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice , 2018, bioRxiv.

[6]  Tingting Zou,et al.  Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion. , 2018, Biochemical and biophysical research communications.

[7]  Wen-xiu Ma,et al.  Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants , 2017 .

[8]  Xianghua Li,et al.  A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts , 2017, Front. Plant Sci..

[9]  M. Zakria,et al.  A Transcription Activator-Like Effector Tal7 of Xanthomonas oryzae pv. oryzicola Activates Rice Gene Os09g29100 to Suppress Rice Immunity , 2017, Scientific Reports.

[10]  J. Boch,et al.  Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14‐inducing TAL effectors , 2016, Plant biotechnology journal.

[11]  Bing Yang,et al.  Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance , 2016, Nature Communications.

[12]  Xianghua Li,et al.  A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria , 2016, eLife.

[13]  A. Ghesquière,et al.  A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. , 2015, The Plant journal : for cell and molecular biology.

[14]  F. White,et al.  TAL effectors and the executor R genes , 2015, Front. Plant Sci..

[15]  Guo‐Liang Wang,et al.  The RhoGAP SPIN6 Associates with SPL11 and OsRac1 and Negatively Regulates Programmed Cell Death and Innate Immunity in Rice , 2015, PLoS pathogens.

[16]  F. Xiong,et al.  OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. , 2014, The Plant journal : for cell and molecular biology.

[17]  Qinlong Zhu,et al.  XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. , 2014, Molecular plant.

[18]  J. Leach,et al.  Novel insights into rice innate immunity against bacterial and fungal pathogens. , 2014, Annual review of phytopathology.

[19]  D. Luse The RNA polymerase II preinitiation complex , 2014, Transcription.

[20]  J. Boch,et al.  Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. , 2013, The New phytologist.

[21]  Matthew J Moscou,et al.  Engineering plant disease resistance based on TAL effectors. , 2013, Annual review of phytopathology.

[22]  Stefan Posch,et al.  Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites , 2013, PLoS Comput. Biol..

[23]  Yoshiaki Nagamura,et al.  RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome , 2012, Nucleic Acids Res..

[24]  G. Salmond,et al.  Top 10 plant pathogenic bacteria in molecular plant pathology. , 2012, Molecular plant pathology.

[25]  Jun Liu,et al.  Lysin Motif–Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Immunity[W][OA] , 2012, Plant Cell.

[26]  J. M. Dow,et al.  Pathogenomics of Xanthomonas: understanding bacterium–plant interactions , 2011, Nature Reviews Microbiology.

[27]  Cai-guo Xu,et al.  The Bacterial Pathogen Xanthomonas oryzae Overcomes Rice Defenses by Regulating Host Copper Redistribution[W][OA] , 2010, Plant Cell.

[28]  C. Qiu,et al.  Transcription activator-like type III effector AvrXa27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. , 2009, Molecular plant pathology.

[29]  H. Stunnenberg,et al.  A facelift for the general transcription factor TFIIA. , 2007, Biochimica et biophysica acta.

[30]  Bing Yang,et al.  Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice , 2007, Proceedings of the National Academy of Sciences.

[31]  A. Bogdanove,et al.  Xanthomonas oryzae pathovars: model pathogens of a model crop. , 2006, Molecular plant pathology.

[32]  Daoxiu Zhou,et al.  Characterization and functional analysis of Arabidopsis TFIIA reveal that the evolutionarily unconserved region of the large subunit has a transcription activation domain , 1999, Plant Molecular Biology.

[33]  P. Sigler,et al.  Crystal Structure of the Yeast TFIIA/TBP/DNA Complex , 1996, Science.

[34]  T. Richmond,et al.  Crystal structure of a yeast TFIIA/TBP/DNA complex , 1996, Nature.

[35]  R. Roeder,et al.  A single cDNA, hTFIIA/alpha, encodes both the p35 and p19 subunits of human TFIIA. , 1993, Genes & development.

[36]  R. Tjian,et al.  Drosophila TFIIA-L is processed into two subunits that are associated with the TBP/TAF complex. , 1993, Genes & development.