Residual Stress Distribution in Machining Annealed 18 Percent Nickel Maraging Steel
暂无分享,去创建一个
A novel electrolytic etching technique is used to determine the residual stress distribution in the machining of annealed 18 percent nickel maraging steel. Ring shaped specimens were machined under unlubricated orthogonal conditions with carbide cutting tools having wear lands of 0.125, 0.25, and 0.5 mm length at cutting speeds ranging between 0.05 and 1.60 ms−1 . The results of the investigation show that the residual stresses are tensile at the machined surface and decrease with an increase in depth beneath the machined surface. The maximum (near surface) residual stress and depth of the severely stressed region increase with an increase in cutting speed and tool wear land length. The results are interpreted in terms of the variations in the amount of surface region deformation produced by changes in cutting conditions.