Morphing between polylines

Given two non-intersecting simple polylines in the plane, we study the problem of continuously transforming or morphing one polyline into the other. Our morphing strategies have the desirable property that every intermediate polyline is also simple. We also guarantee that no portion of the polylines to be morphed is stretched or compressed by more than a user-defined parameter during the entire morphing. Our algorithms are based on the morphing width, a new metric we have developed for measuring the similarity between two polylines. We develop an algorithm that computes the morphing width of the two polylines and constructs a corresponding morphing strategy in &Ogr;(n2 log2 n) time using &Ogr;(n2) space, where n is the total number of vertices in the polylines. We describe another algorithm that computes a factor-2 approximation of the morphing width and a corresponding morphing scheme in &Ogr;(n log n) time.

[1]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[2]  Rephael Wenger,et al.  Constructing Piecewise Linear Homeomorphisms of Simple Polygons , 1997, J. Algorithms.

[3]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[4]  Dinesh Manocha,et al.  Interactive surface decomposition for polyhedral morphing , 1999, The Visual Computer.

[5]  Leonidas J. Guibas,et al.  Sweeping simple polygons with a chain of guards , 2000, SODA '00.

[6]  Arie E. Kaufman,et al.  Wavelet-based volume morphing , 1994, Proceedings Visualization '94.

[7]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[8]  Leonidas J. Guibas,et al.  Morphing Simple Polygons , 1994, SCG '94.

[9]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[10]  M. Fréchet Sur quelques points du calcul fonctionnel , 1906 .

[11]  D. T. Lee,et al.  Efficient Computation of the Geodesic Voronoi Diagram of Points in a Simple Polygon (Extended Abstract) , 1995, ESA.

[12]  Noga Alon,et al.  Can visibility graphs Be represented compactly? , 1993, SCG '93.

[13]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[14]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[15]  Subhash Suri,et al.  Morphing binary trees , 1995, SODA '95.

[16]  Boris Aronov,et al.  On Compatible Triangulations of Simple Polygons , 1993, Comput. Geom..

[17]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[18]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[19]  John F. Hughes,et al.  Scheduled Fourier volume morphing , 1992, SIGGRAPH.

[20]  Noga Alon,et al.  Can visibility graphs Be represented compactly? , 1994, Discret. Comput. Geom..

[21]  Rolf Klein,et al.  The two guards problem , 1991, SCG '91.

[22]  Jarek Rossignac,et al.  Solid-interpolating deformations: Construction and animation of PIPs , 1991, Comput. Graph..

[23]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.