From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research

[1]  Olivier Pourquié,et al.  Retinoic acid , 2008, Current Biology.

[2]  R. Jaenisch,et al.  Politically correct human embryonic stem cells? , 2006, The New England journal of medicine.

[3]  Robert Lanza,et al.  Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres , 2006, Nature.

[4]  R. Jaenisch,et al.  Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts , 2006, Nature.

[5]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[6]  A. Chakravarti,et al.  Genomic alterations in cultured human embryonic stem cells , 2005, Nature Genetics.

[7]  S. Paek,et al.  Patient-specific embryonic stem cells derived from human SCNT blastocysts. , 2005, Science.

[8]  Austin G Smith,et al.  Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell , 2005, PLoS biology.

[9]  D. Wolf,et al.  Challenges of primate embryonic stem cell research. , 2005, Cloning and stem cells.

[10]  Mario R. Capecchi,et al.  Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century , 2005, Nature Reviews Genetics.

[11]  J. Nadeau,et al.  The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours , 2005, Nature.

[12]  O. Hovatta,et al.  Feeder-free derivation of human embryonic stem-cell lines , 2005, The Lancet.

[13]  Michael D West,et al.  Human embryonic stem cells derived without feeder cells , 2005, The Lancet.

[14]  O. Smithies Many little things: one geneticist's view of complex diseases , 2005, Nature Reviews Genetics.

[15]  J. Thomson,et al.  Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells , 2005, Nature Methods.

[16]  Nobuyuki Itoh,et al.  Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. , 2005, The Journal of clinical investigation.

[17]  M. Oshimura,et al.  Generation of Pluripotent Stem Cells from Neonatal Mouse Testis , 2004, Cell.

[18]  D. Wolf,et al.  Progress with Nonhuman Primate Embryonic Stem Cells1 , 2004, Biology of reproduction.

[19]  S. Simonsson,et al.  DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei , 2004, Nature Cell Biology.

[20]  L. Chin,et al.  Nuclear cloning of embryonal carcinoma cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Schultz,et al.  A role for chemistry in stem cell biology , 2004, Nature Biotechnology.

[22]  Daniel G. Anderson,et al.  Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells , 2004, Nature Biotechnology.

[23]  Thomas M. Schmitt,et al.  Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro , 2004, Nature Immunology.

[24]  Sung Keun Kang,et al.  Evidence of a Pluripotent Human Embryonic Stem Cell Line Derived from a Cloned Blastocyst , 2004, Science.

[25]  George Q. Daley,et al.  Derivation of embryonic germ cells and male gametes from embryonic stem cells , 2004, Nature.

[26]  R. Edwards 1 – History of Embryo Stem Cells , 2004 .

[27]  P. Collas,et al.  Cloned Calves from Chromatin Remodeled In Vitro1 , 2004, Biology of reproduction.

[28]  D. Loebel,et al.  Lineage choice and differentiation in mouse embryos and embryonic stem cells. , 2003, Developmental biology.

[29]  J. Nichols,et al.  BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3 , 2003, Cell.

[30]  Huawei Li,et al.  Generation of hair cells by stepwise differentiation of embryonic stem cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Kyung-Soon Park,et al.  Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors , 2003, Nature Biotechnology.

[32]  N. Tsunekawa,et al.  Embryonic stem cells can form germ cells in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Peter G. Schultz,et al.  Synthetic small molecules that control stem cell fate , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Schöler,et al.  Derivation of Oocytes from Mouse Embryonic Stem Cells , 2003, Science.

[35]  J. Thomson,et al.  BMP4 initiates human embryonic stem cell differentiation to trophoblast , 2002, Nature Biotechnology.

[36]  H. Wichterle,et al.  Directed Differentiation of Embryonic Stem Cells into Motor Neurons , 2002, Cell.

[37]  R. McKay,et al.  Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease , 2002, Nature.

[38]  J. Thomson,et al.  Preimplantation Human Embryos and Embryonic Stem Cells Show Comparable Expression of Stage‐Specific Embryonic Antigens , 2002, Stem cells.

[39]  P. Andrews,et al.  From teratocarcinomas to embryonic stem cells. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  D. Kaufman,et al.  Multilineage Differentiation from Human Embryonic Stem Cell Lines , 2001, Stem cells.

[41]  V. Tabar,et al.  Differentiation of Embryonic Stem Cell Lines Generated from Adult Somatic Cells by Nuclear Transfer , 2001, Science.

[42]  J A Thomson,et al.  Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. , 2000, Developmental biology.

[43]  T. Yagi,et al.  Mouse embryonic stem (ES) cell lines established from neuronal cell‐derived cloned blastocysts , 2000, Genesis.

[44]  D. Melton,et al.  Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Trounson,et al.  Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei , 2000, Current Biology.

[46]  D. Solter,et al.  Putting Stem Cells to Work , 1999, Science.

[47]  J. Axelman,et al.  "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells" (1998), by John Gearhart et al. , 2012 .

[48]  Peter J. Donovan,et al.  Derivation of pluripotent stem cells from cultured human primordial germ cells , 1998 .

[49]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[50]  J. Look,et al.  Erratum: Pluripotent embryonic stem cells from the rat are capable of producing chimeras (Developmental Biology (1994) 163:1 (288-292)) , 1997 .

[51]  J. Thomson,et al.  Isolation of a primate embryonic stem cell line. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Brenin,et al.  Pluripotent embryonic stem cells from the rat are capable of producing chimeras. , 1994, Developmental biology.

[53]  J. Roder,et al.  Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Donovan,et al.  Long-term proliferation of mouse primordial germ cells in culture , 1992, Nature.

[55]  B. Hogan,et al.  Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture , 1992, Cell.

[56]  A. Simeone,et al.  Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells , 1990, Nature.

[57]  A. Clarke,et al.  Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells , 1989, Cell.

[58]  Donald Metcalf,et al.  Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells , 1988, Nature.

[59]  John K. Heath,et al.  Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides , 1988, Nature.

[60]  M. Capecchi,et al.  Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells , 1987, Cell.

[61]  P. Andrews,et al.  Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. , 1987, Developmental biology.

[62]  A. Bradley,et al.  A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice , 1987, Nature.

[63]  David W. Melton,et al.  Targetted correction of a mutant HPRT gene in mouse embryonic stem cells , 1987, Nature.

[64]  T. Doetschman,et al.  Transgenesis by means of blastocyst-derived embryonic stem cell lines. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Capecchi,et al.  Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene , 1986, Nature.

[66]  A. Bradley,et al.  Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector , 1986, Nature.

[67]  Mario R. Capecchi,et al.  High frequency targeting of genes to specific sites in the mammalian genome , 1986, Cell.

[68]  P. Andrews,et al.  Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  R Kemler,et al.  The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. , 1985, Journal of embryology and experimental morphology.

[70]  P. Andrews Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. , 1984, Developmental biology.

[71]  A. Bradley,et al.  Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines , 1984, Nature.

[72]  N C Dracopoli,et al.  Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. , 1984, Laboratory investigation; a journal of technical methods and pathology.

[73]  D. Solter,et al.  Stage‐specific embryonic antigens (SSEA‐3 and ‐4) are epitopes of a unique globo‐series ganglioside isolated from human teratocarcinoma cells. , 1983, The EMBO journal.

[74]  D. Solter,et al.  New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. , 1983, The Journal of biological chemistry.

[75]  L. Silver,et al.  Teratocarcinoma stem cells , 1983 .

[76]  B. Mintz,et al.  Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. , 1982, The Journal of experimental zoology.

[77]  D. Solter,et al.  Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells , 1982, Cell.

[78]  M. McBurney,et al.  Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line , 1982, Nature.

[79]  J. Rossant,et al.  The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. , 1982, Journal of embryology and experimental morphology.

[80]  P. Goodfellow,et al.  Cell‐surface antigens of a clonal human embryonal carcinoma cell line: Morphological and antigenic differentiation in culture , 1982, International journal of cancer.

[81]  P. Andrews,et al.  Alkaline phosphatase isozymes as possible markers of differentiation in human testicular teratocarcinoma cell lines. , 1981, Developmental biology.

[82]  G. Martin,et al.  Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[83]  B. Mintz,et al.  Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[84]  D. Solter,et al.  Stage-specific embryonic antigen involves αl→ 3 fucosylated type 2 blood group chains , 1981, Nature.

[85]  M. Kaufman,et al.  Establishment in culture of pluripotential cells from mouse embryos , 1981, Nature.

[86]  P. Andrews,et al.  A comparative study of eight cell lines derived from human testicular teratocarcinoma , 1980, International journal of cancer.

[87]  D. Solter,et al.  Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[88]  S. Strickland,et al.  The induction of differentiation in teratocarcinoma stem cells by retinoic acid , 1978, Cell.

[89]  G. Galfré,et al.  Monoclonal antibodies as probes for differentiation and tumor-associated antigens: a Forssman specificity on teratocarcinoma stem cells , 1978, Cell.

[90]  M. Evans,et al.  Participation of cultured teratocarcinoma cells in mouse embryogenesis. , 1978, Journal of embryology and experimental morphology.

[91]  F. Jacob,et al.  Effets de l'hexaméthylènebisacétamide sur la différenciation de cellules de carcinome embryonnaire. , 1978 .

[92]  P. Avner,et al.  Isolation of a human teratoma cell line which expresses F9 antigen , 1977, Nature.

[93]  K. Illmensee,et al.  Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[94]  M. Evans,et al.  Multiple differentiation of clonal teratocarcinoma stem cells following embryoid body formation in vitro , 1975, Cell.

[95]  M. Evans,et al.  Fate of teratocarcinoma cells injected into early mouse embryos , 1975, Nature.

[96]  K. Illmensee,et al.  Normal genetically mosaic mice produced from malignant teratocarcinoma cells. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[97]  G. Martin,et al.  Teratocarcinomas as a model system for the study of embryogenesis and neoplasia , 1975, Cell.

[98]  M. Evans,et al.  Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Solter,et al.  Teratomas and differentiation , 1975 .

[100]  F. Jacob,et al.  [Mouse teratocarcinoma: differentiation in cultures of a multipotential primitive cell line (author's transl)]. , 1975, Annales de microbiologie.

[101]  J. Fogh Human Tumor Cells in Vitro , 1975, Springer US.

[102]  R. Brinster THE EFFECT OF CELLS TRANSFERRED INTO THE MOUSE BLASTOCYST ON SUBSEQUENT DEVELOPMENT , 1974, The Journal of experimental medicine.

[103]  M. Evans,et al.  The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. , 1974, Cell.

[104]  L. C. Stevens,et al.  The development of teratomas from parthenogenetically activated ovarian mouse eggs. , 1974, Developmental biology.

[105]  B. Ephrussi,et al.  Alkaline phosphatase activity in mouse teratoma. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[106]  F. Jacob,et al.  Tératocarcinome de la spuris: isolement, culture et propriétés de cellules a potentialités multiples , 1973 .

[107]  L. C. Stevens A new inbred subline of mice (129-terSv) with a high incidence of spontaneous congenital testicular teratomas. , 1973, Journal of the National Cancer Institute.

[108]  M. Evans,et al.  The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. , 1972, Journal of embryology and experimental morphology.

[109]  D. Solter,et al.  Extrauterine Growth of Mouse Egg-cylinders results in Malignant Teratoma , 1970, Nature.

[110]  B. Ephrussi,et al.  Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. , 1970, Journal of the National Cancer Institute.

[111]  G. Sato,et al.  In vitro growth and differetiation of clonal populations of multipotential mouse clls derived from a transplantable testicular teratocarcinoma. , 1970, Journal of the National Cancer Institute.

[112]  L. C. Stevens The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. , 1970, Developmental biology.

[113]  G. B. Pierce,et al.  MULTIPOTENTIALITY OF SINGLE EMBRYONAL CARCINOMA CELLS. , 1964, Cancer research.

[114]  L. C. Stevens EXPERIMENTAL PRODUCTION OF TESTICULAR TERATOMAS IN MICE. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[115]  G. B. Pierce,et al.  An in vitro and in vivo study of differentiation in teratocarcinomas , 1961, Cancer.

[116]  F. Dixon,et al.  The biology of testicular cancer. II. Endocrinology of transplanted tumors. , 1958, Cancer research.

[117]  F. Dixon,et al.  The biology of testicular cancer. I. Behavior after transplantation. , 1957, Cancer research.

[118]  L. C. Stevens,et al.  Spontaneous Testicular Teratomas in an Inbred Strain of Mice. , 1954, Proceedings of the National Academy of Sciences of the United States of America.