Growth rates of atmospheric molecular clusters based on appearance times and collision-evaporation fluxes : Growth by monomers

[1]  K. Lehtinen,et al.  Atmospheric new particle formation: real and apparent growth of neutral and charged particles , 2011 .

[2]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[3]  C. Kuang,et al.  Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations , 2008 .

[4]  J. Smith,et al.  Growth rates of freshly nucleated atmospheric particles in Atlanta , 2005 .

[5]  Carlos Larriba,et al.  The Mobility–Volume Relationship below 3.0 nm Examined by Tandem Mobility–Mass Measurement , 2011 .

[6]  P. Mcmurry,et al.  Measurements of new particle formation and ultrafine particle growth rates at a clean continental site , 1997 .

[7]  I. Riipinen,et al.  Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation , 2008 .

[8]  Douglas R. Worsnop,et al.  The contribution of organics to atmospheric nanoparticle growth , 2012 .

[9]  Frank Arnold,et al.  Atmospheric sulphuric acid and aerosol formation : implications from atmospheric measurements for nucleation and early growth mechanisms , 2006 .

[10]  H. Hansson,et al.  Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation , 2008 .

[11]  A. Arneth,et al.  EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events , 2010 .

[12]  I. Riipinen,et al.  Model for acid-base chemistry in nanoparticle growth (MABNAG) , 2013 .

[13]  K. Lehtinen,et al.  Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed , 2010 .

[14]  M. Kulmala,et al.  Annual and size dependent variation of growth rates and ion concentrations in boreal forest , 2005 .

[15]  Peter H. McMurry,et al.  Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm , 2011 .

[16]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[17]  Miikka Dal Maso,et al.  Measurement of the nucleation of atmospheric aerosol particles , 2012, Nature Protocols.

[18]  R. Caprioli,et al.  Microdialysis/Mass Spectrometry , 1994 .

[19]  M. D. Maso,et al.  The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe , 2005 .

[20]  J. Smith,et al.  Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei , 2012 .

[21]  David T Wu The time lag in nucleation theory , 1992 .

[22]  T. Petäjä,et al.  Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth , 2012 .

[23]  I. Riipinen,et al.  Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä , 2009 .

[24]  L. Pirjola,et al.  How significantly does coagulational scavenging limit atmospheric particle production , 2001 .

[25]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[26]  R. McGraw,et al.  Effects of amines on formation of sub‐3 nm particles and their subsequent growth , 2012 .

[27]  I. Riipinen,et al.  Interactive comment on “ Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events ” by J , 2011 .

[28]  T. Petäjä,et al.  Technical Note: Using DEG-CPCs at upper tropospheric temperatures , 2014 .

[29]  T. Petäjä,et al.  Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier , 2014 .

[30]  T. Petäjä,et al.  Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules , 2013, Proceedings of the National Academy of Sciences.

[31]  H. Vehkamäki,et al.  Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters. , 2013, The Journal of chemical physics.

[32]  J. Seinfeld,et al.  Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere , 2013, Nature.

[33]  B. Verheggen,et al.  An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions , 2006 .

[34]  Miikka Dal Maso,et al.  Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland , 2005 .

[35]  Christopher J. Hogan,et al.  The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry , 2013, Journal of The American Society for Mass Spectrometry.

[36]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[37]  Edward Charles Fortner,et al.  Atmospheric New Particle Formation Enhanced by Organic Acids , 2004, Science.

[38]  P. Hari,et al.  Nucleation rate and vapor concentration estimations using a least squares aerosol dynamics method , 2004 .

[39]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[40]  I. Riipinen,et al.  Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle size, season, data analysis method and ambient conditions , 2011 .

[41]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[42]  I. Riipinen,et al.  An improved criterion for new particle formation in diverse atmospheric environments , 2010 .

[43]  Matthew J. McGrath,et al.  Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations , 2011 .

[44]  M. McGrath,et al.  From quantum chemical formation free energies to evaporation rates , 2011 .