Graphs, Links, and Duality on Surfaces

We introduce a polynomial invariant of graphs on surfaces, $P_G$, generalizing the classical Tutte polynomial. Topological duality on surfaces gives rise to a natural duality result for $P_G$, analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where the Tutte polynomial is known as the partition function of the Potts model. For ribbon graphs, $P_G$ specializes to the well-known Bollobas-Riordan polynomial, and in fact the two polynomials carry equivalent information in this context. Duality is also established for a multivariate version of the polynomial $P_G$. We then consider a 2-variable version of the Jones polynomial for links in thickened surfaces, taking into account homological information on the surface. An analogue of Thistlethwaite's theorem is established for these generalized Jones and Tutte polynomials for virtual links.

[1]  V. Manturov MULTI-VARIABLE POLYNOMIAL INVARIANTS FOR VIRTUAL LINKS , 2003 .

[2]  R. Ho Algebraic Topology , 2022 .

[3]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[4]  Barry M. McCoy,et al.  Dimers and the Critical Ising Model on lattices of genus >1 , 2001 .

[5]  P. Fendley,et al.  Tutte chromatic identities from the Temperley-Lieb algebra , 2007, 0711.0016.

[6]  Naoko Kamada On the Jones polynomials of checkerboard colorable virtual links , 2002 .

[7]  François Jaeger,et al.  Tutte polynomials and link polynomials , 1988 .

[8]  B. S Webb,et al.  Surveys in combinatorics 2005 , 2005 .

[9]  Oliver T. Dasbach,et al.  The Jones polynomial and graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[10]  Sergei Chmutov,et al.  Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial , 2007, J. Comb. Theory, Ser. B.

[11]  Minimal surface representations of virtual knots and links , 2004, math/0401035.

[12]  Iain Moffatt,et al.  Partial duality and Bollobás and Riordan's ribbon graph polynomial , 2008, Discret. Math..

[13]  Fabien Vignes-Tourneret,et al.  The multivariate signed Bollobás-Riordan polynomial , 2008, Discret. Math..

[14]  Joanna A. Ellis-Monaghan,et al.  A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan , 2009, Eur. J. Comb..

[15]  P. Fendley,et al.  Link invariants, the chromatic polynomial and the Potts model , 2008, 0806.3484.

[16]  Skein Modules of 3-Manifolds , 2006, math/0611797.

[17]  J. Zuber,et al.  Critical Ising correlation functions in the plane and on the torus , 1987 .

[18]  V. Manturov KAUFFMAN-LIKE POLYNOMIAL AND CURVES IN 2-SURFACES , 2003 .

[19]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[20]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[21]  Y. Saint-Aubin,et al.  Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Igor Pak,et al.  The Kauffman bracket of virtual links and the Bollob\'as-Riordan polynomial , 2006 .

[23]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[24]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[25]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[26]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[27]  Béla Bollobás,et al.  A Polynomial Invariant of Graphs On Orientable Surfaces , 2001 .

[28]  On the Jones polynomials of checkerboard colorable virtual knots , 2000, math/0008074.

[29]  Béla Bollobás,et al.  A polynomial of graphs on surfaces , 2002 .

[30]  W. Massey A basic course in algebraic topology , 1991 .

[31]  S. Chmutov Dedicated to Askold Khovanskii on the occasion of his 60th birthday THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBÁS-RIORDAN POLYNOMIAL , 2006 .

[32]  Iain Moffatt Knot invariants and the Bollobás-Riordan polynomial of embedded graphs , 2008, Eur. J. Comb..

[33]  William T. Tutte A Ring in Graph Theory , 1947 .