Graphs, Links, and Duality on Surfaces
暂无分享,去创建一个
[1] V. Manturov. MULTI-VARIABLE POLYNOMIAL INVARIANTS FOR VIRTUAL LINKS , 2003 .
[2] R. Ho. Algebraic Topology , 2022 .
[3] Robin Wilson,et al. Modern Graph Theory , 2013 .
[4] Barry M. McCoy,et al. Dimers and the Critical Ising Model on lattices of genus >1 , 2001 .
[5] P. Fendley,et al. Tutte chromatic identities from the Temperley-Lieb algebra , 2007, 0711.0016.
[6] Naoko Kamada. On the Jones polynomials of checkerboard colorable virtual links , 2002 .
[7] François Jaeger,et al. Tutte polynomials and link polynomials , 1988 .
[8] B. S Webb,et al. Surveys in combinatorics 2005 , 2005 .
[9] Oliver T. Dasbach,et al. The Jones polynomial and graphs on surfaces , 2008, J. Comb. Theory, Ser. B.
[10] Sergei Chmutov,et al. Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial , 2007, J. Comb. Theory, Ser. B.
[11] Minimal surface representations of virtual knots and links , 2004, math/0401035.
[12] Iain Moffatt,et al. Partial duality and Bollobás and Riordan's ribbon graph polynomial , 2008, Discret. Math..
[13] Fabien Vignes-Tourneret,et al. The multivariate signed Bollobás-Riordan polynomial , 2008, Discret. Math..
[14] Joanna A. Ellis-Monaghan,et al. A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan , 2009, Eur. J. Comb..
[15] P. Fendley,et al. Link invariants, the chromatic polynomial and the Potts model , 2008, 0806.3484.
[16] Skein Modules of 3-Manifolds , 2006, math/0611797.
[17] J. Zuber,et al. Critical Ising correlation functions in the plane and on the torus , 1987 .
[18] V. Manturov. KAUFFMAN-LIKE POLYNOMIAL AND CURVES IN 2-SURFACES , 2003 .
[19] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.
[20] W. T. Tutte,et al. A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.
[21] Y. Saint-Aubin,et al. Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Igor Pak,et al. The Kauffman bracket of virtual links and the Bollob\'as-Riordan polynomial , 2006 .
[23] Louis H. Kauffman,et al. State Models and the Jones Polynomial , 1987 .
[24] Louis H. Kauffman. Virtual Knot Theory , 1999, Eur. J. Comb..
[25] V. Jones. A polynomial invariant for knots via von Neumann algebras , 1985 .
[26] Morwen Thistlethwaite,et al. A spanning tree expansion of the jones polynomial , 1987 .
[27] Béla Bollobás,et al. A Polynomial Invariant of Graphs On Orientable Surfaces , 2001 .
[28] On the Jones polynomials of checkerboard colorable virtual knots , 2000, math/0008074.
[29] Béla Bollobás,et al. A polynomial of graphs on surfaces , 2002 .
[30] W. Massey. A basic course in algebraic topology , 1991 .
[31] S. Chmutov. Dedicated to Askold Khovanskii on the occasion of his 60th birthday THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBÁS-RIORDAN POLYNOMIAL , 2006 .
[32] Iain Moffatt. Knot invariants and the Bollobás-Riordan polynomial of embedded graphs , 2008, Eur. J. Comb..
[33] William T. Tutte. A Ring in Graph Theory , 1947 .