Unidirectional flow of composite bright-bright solitons through asymmetric double potential barriers and wells

We investigate the dynamics of two component bright-bright (BB) solitons through reflectionless double barrier and double well potentials in the framework of a Manakov system governed by the coupled nonlinear Schrödinger equations. The objective is to achieve unidirectional flow and unidirectional segregation/splitting, which may be used in the design of optical data processing devices. We observe how the propagation of composite BB soliton is affected by the presence of interaction coupling between the two components passing through the asymmetric potentials. We consider Gaussian and Rosen-Morse double potential barriers in order to achieve the unidirectional flow. Moreover, we observe a novel phenomenon which we name “Polarity Reversal” in the unidirectional flow. In this situation, the polarity of the diode is reversed. To understand the physics underlying these phenomena, we perform a variational calculation where we also achieve unidirectional segregation/splitting using an asymmetric double square potential well. Our comparative study between analytical and numerical analysis lead to an excellent agreement between the two methods.

[1]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[2]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[3]  Yaw-Dong Wu All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  James P. Gordon,et al.  Solitons in optical fibers , 1987 .

[5]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[6]  S. López-Aguayo,et al.  Solitons in   -symmetric optical Mathieu lattices , 2017 .

[7]  J. Brand,et al.  Resonant trapping in the transport of a matter-wave soliton through a quantum well , 2009, 0912.3019.

[8]  Y. Kivshar,et al.  Soliton-based optical switching in waveguide arrays , 1996 .

[9]  Kivshar,et al.  Radiative effects in the theory of beam propagation at nonlinear interfaces. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[10]  R. Kheradmand,et al.  Two-Dimensional Discrete Cavity Solitons: Switching and All-Optical Gates , 2012, IEEE Photonics Journal.

[11]  Peyrard,et al.  Interaction of discrete breathers with impurity modes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  B. Malomed,et al.  Soliton controlling, switching, and splitting in nonlinear fused-fiber couplers , 1995 .

[13]  Andreas Tünnermann,et al.  All-optical routing and switching for three-dimensional photonic circuitry , 2011, Scientific reports.

[14]  Adding binary numbers with discrete solitons in waveguide arrays , 2020, 2108.01406.

[15]  Fu-Guo Deng,et al.  Unidirectional transport of wave packets through tilted discrete breathers in nonlinear lattices with asymmetric defects. , 2016, Physical review. E.

[16]  A. Bondeson,et al.  Soliton Perturbations: A Variational Principle for the Soliton Parameters , 1979 .

[17]  S. López-Aguayo,et al.  Two-dimensional solitons in Laguerre–Gaussian potentials , 2019, Journal of Optics.

[18]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[19]  Wenjun Liu,et al.  Optical properties and applications for MoS 2 -Sb 2 Te 3 -MoS 2 heterostructure materials , 2018 .

[20]  Low velocity quantum reflection of Bose-Einstein condensates. , 2006, Physical review letters.

[21]  B. Malomed,et al.  Symmetry breaking and restoring wave transmission in diode-antidiode double chains. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Antonio De Luca,et al.  All-optical switching and logic gating with spatial solitons in liquid crystals , 2002 .

[23]  Umberto Bortolozzo,et al.  Soliton gating and switching in liquid crystal light valve , 2010 .

[24]  Min-Lun Huang,et al.  All-optical switch based on the local nonlinear Mach-Zehnder interferometer. , 2007, Optics express.

[25]  A. Scott Encyclopedia of nonlinear science , 2006 .

[26]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[27]  D. Christodoulides,et al.  Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays. , 2001, Physical review letters.

[28]  U. Al Khawaja,et al.  Amplifying optical signals with discrete solitons in waveguide arrays , 2020, 2108.01395.

[29]  Zhiyi Wei,et al.  Dark solitons in WS 2 erbium-doped fiber lasers , 2016 .

[30]  S. López-Aguayo,et al.  Stable Legendre–Lorentzian solitons in localized optical potentials , 2021, Journal of Optics.

[31]  Wenjun Liu,et al.  Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. , 2017, Nanoscale.

[32]  Boris A. Malomed,et al.  Soliton-defect collisions in the nonlinear Schrödinger equation , 1995 .

[33]  Yuri S. Kivshar,et al.  Interaction of dark solitons with localized impurities in Bose-Einstein condensates , 2002 .

[34]  Wenjun Liu,et al.  Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic–quintic Ginzburg–Landau equation influenced by higher-order effects and nonlinear gain , 2020 .

[35]  H. Sakaguchi,et al.  Scattering and Trapping of Nonlinear Schrödinger Solitons in External Potentials , 2004 .

[36]  Newell,et al.  Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface. , 1989, Physical review. A, General physics.

[37]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[38]  J. Brand,et al.  Enhanced quantum reflection of matter-wave solitons , 2005, cond-mat/0505697.

[39]  F. Dou,et al.  Matter-wave interactions in two-component Bose-Einstein condensates , 2015 .

[40]  B. Malomed,et al.  Matter-wave soliton interferometer based on a nonlinear splitter , 2016, 1601.07889.

[41]  Jacob Scheuer,et al.  All-optical gates facilitated by soliton interactions in a multilayered Kerr medium , 2005 .

[42]  W. Marsden I and J , 2012 .

[43]  R. Vicencio,et al.  Trapping of discrete solitons by defects in nonlinear waveguide arrays. , 2006, Optics letters.

[44]  Diana Anderson,et al.  Variational approach to nonlinear pulse propagation in optical fibers , 1983 .

[45]  A. M. Martin,et al.  Quantum reflection of bright matter-wave solitons , 2008, 0802.4362.

[46]  S. Al-Marzoug,et al.  Unidirectional flow of solitons with nonlinearity management. , 2019, Physical review. E.

[47]  Wenjun Liu,et al.  Dark soliton control based on dispersion and nonlinearity for third-order nonlinear Schrödinger equation , 2019, Optik.

[48]  Philip Holmes,et al.  Strong NLS Soliton-Defect Interactions , 2002, nlin/0203057.

[49]  U. Al Khawaja,et al.  Directional flow of solitons with asymmetric potential wells: Soliton diode , 2013, 1303.0719.

[50]  Y. Kivshar,et al.  Resonant soliton-impurity interactions. , 1991, Physical review letters.

[51]  A. Sukhorukov,et al.  Unidirectional flow of discrete solitons in waveguide arrays. , 2015, Optics letters.

[52]  S. M. Al-Marzoug,et al.  All-optical switches, unidirectional flow, and logic gates with discrete solitons in waveguide arrays. , 2016, Optics express.

[53]  Wenjun Liu,et al.  Analytic study on the influences of higher-order effects on optical solitons in fiber laser , 2019, Optik.

[54]  Giulio Casati,et al.  Asymmetric wave propagation in nonlinear systems. , 2011, Physical review letters.

[55]  A. Schirotzek,et al.  Quantum reflection from a solid surface at normal incidence. , 2004, Physical review letters.

[56]  Zhiyi Wei,et al.  Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. , 2017, Optics express.

[57]  Wenjun Liu,et al.  Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers , 2017 .