Operando Kinetics of Hydrogen Evolution and Elemental Dissolution Ii a Time Resolved Mass-Charge Balance During the Anodic Dissolution of Magnesium with Variable Iron Content

[1]  K. Ogle,et al.  Operando Kinetics of Hydrogen Evolution and Elemental Dissolution I: The Dissolution of Galvanized Steel in Hydrochloric Acid , 2023, SSRN Electronic Journal.

[2]  Xingrui Chen,et al.  Anodic hydrogen evolution on Mg , 2021, Journal of Magnesium and Alloys.

[3]  Ying-ying Yu,et al.  New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES , 2020 .

[4]  K. Ogle Atomic Emission Spectroelectrochemistry: Real-Time Rate Measurements of Dissolution, Corrosion, and Passivation , 2019, Corrosion.

[5]  N. Birbilis,et al.  Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles , 2019, Corrosion Science.

[6]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[7]  G. Frankel,et al.  The Evolution of Anodic Hydrogen on High Purity Magnesium in Acidic Buffer Solution , 2017 .

[8]  G. Frankel,et al.  The Source of Anodic Hydrogen Evolution on Ultra High Purity Magnesium , 2016 .

[9]  O. Gharbi,et al.  On the effect of Fe concentration on Mg dissolution and activation studied using atomic emission spectroelectrochemistry and scanning electrochemical microscopy , 2016 .

[10]  F. Bellucci,et al.  Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging , 2015 .

[11]  G. Frankel,et al.  Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium , 2015 .

[12]  G. Frankel,et al.  Corrosion mechanism and hydrogen evolution on Mg , 2015 .

[13]  O. Gharbi,et al.  Mg Dissolution in Phosphate and Chloride Electrolytes: Insight into the Mechanism of the Negative Difference Effect , 2015 .

[14]  G. Frankel,et al.  Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution , 2014 .

[15]  P. Tabeling,et al.  A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution , 2014 .

[16]  M. Curioni The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging , 2014 .

[17]  Jun Chen,et al.  Magnesium–air batteries: from principle to application , 2014 .

[18]  G. Song,et al.  Advances in Mg corrosion and research suggestions , 2013 .

[19]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[20]  N. Birbilis,et al.  Evolution of hydrogen at dissolving magnesium surfaces , 2013 .

[21]  A. Atrens,et al.  Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg(OH)2 , 2012 .

[22]  C. Weber,et al.  The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions , 2010 .

[23]  J. Światowska,et al.  The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry , 2010 .

[24]  Jun Chen,et al.  Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells , 2009 .

[25]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of Chemical Research.

[26]  Geraint Williams,et al.  Localized Corrosion of Magnesium in Chloride-Containing Electrolyte Studied by a Scanning Vibrating Electrode Technique , 2008 .

[27]  A. Atrens,et al.  Corrosion of AZ91 in 1N NaCl and the Mechanism of Magnesium Corrosion , 2008 .

[28]  D. StJohn,et al.  The electrochemical corrosion of pure magnesium in 1 N NaCl , 1997 .

[29]  R. Tunold,et al.  The corrosion of magnesium in aqueous solution containing chloride ions , 1977 .

[30]  R. P. Frankenthal,et al.  On the Mechanism of Localized Corrosion of Iron and Stainless Steel I . Electrochemical Studies , 1972 .

[31]  W. Beetz XXXIV. On the development of hydrogen from the anode , 1866 .

[32]  K. Ogle,et al.  Communication—Hydrogen Evolution and Elemental Dissolution by Combined Gravimetric Method and Atomic Emission Spectroelectrochemistry , 2019, Journal of the Electrochemical Society.

[33]  G. Frankel,et al.  Investigating the effect of ferrous ions on the anomalous hydrogen evolution on magnesium in acidic ferrous chloride solution , 2018 .

[34]  N. Birbilis,et al.  The Role of Surface Films and Dissolution Products on the Negative Difference Effect for Magnesium: Comparison of Cl−versus Cl−Free Solutions , 2017 .

[35]  Geraint Williams,et al.  An Experimental Survey of the Cathodic Activation of Metals Including Mg, Sc, Gd, La, Al, Sn, Pb, and Ge in Dilute Chloride Solutions of Varying pH , 2017 .

[36]  J. Deconinck,et al.  On The Time Resolution of the Atomic Emission Spectroelectrochemistry Method , 2016 .

[37]  G. Frankel,et al.  Gravimetric Method for Hydrogen Evolution Measurements on Dissolving Magnesium , 2015 .

[38]  N. Birbilis,et al.  Investigating the Real Time Dissolution of Mg Using Online Analysis by ICP-MS , 2014 .

[39]  N. Birbilis,et al.  The source of hydrogen evolved from a magnesium anode , 2013 .

[40]  G. Frankel,et al.  The growth of 2-D pits in thin film aluminum , 1990 .

[41]  J. Robinson,et al.  Electrochemical Behavior of the Magnesium Anode , 1961 .