Optimization methods of hologram for holographic femtosecond laser processing

In holographic femtosecond laser processing, a precise control of the diffraction peaks generated by a computergenerated hologram (CGH) displayed on a liquid crystal spatial light modulator is very important. We developed some design methods of the CGH. We developed a method that the CGH was optimized with based on an optical measurement of the diffraction peak intensities. Recently we also developed the second harmonic optimization based on the second harmonic generations induced by parallel femtosecond laser pulses. In our presentation, our recent progresses of the CGH optimization for holographic femtosecond laser processing are demonstrated.

[1]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[2]  Yoshio Hayasaki,et al.  Adaptive optimization of a hologram in holographic femtosecond laser processing system. , 2009, Optics letters.

[3]  Yoshio Hayasaki,et al.  Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. , 2007, Applied optics.

[5]  U. Keller,et al.  Adaptive pulse compression by two-photon absorption in semiconductors. , 2002, Optics letters.

[6]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[7]  Yoshio Hayasaki,et al.  Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing , 2007 .

[8]  Yoshio Hayasaki,et al.  Performance Analysis of Adaptive Optimization of Multiplexed Phase Fresnel Lenses , 2009 .

[9]  K. Midorikawa,et al.  Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm , 1994 .

[10]  Eric Audouard,et al.  Programmable focal spot shaping of amplified femtosecond laser pulses. , 2005, Optics letters.

[11]  W. Marsden I and J , 2012 .

[12]  J Bengtsson Kinoform design with an optimal-rotation-angle method. , 1994, Applied optics.

[13]  Hayasaki Yoshio,et al.  Holographic femtosecond laser processing with multiplexed phase Fresnel lenses , 2006 .

[14]  D. Bucknall,et al.  Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses , 1998 .

[15]  Pedro Andrés,et al.  High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. , 2006, Optics letters.

[16]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[17]  Koji Sugioka,et al.  Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. , 2003, Optics letters.

[18]  Shuhei Tanaka,et al.  Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram , 2008 .

[19]  Joseph S. Hayden,et al.  Waveguide fabrication in phosphate glasses using femtosecond laser pulses , 2003 .

[20]  Changhe Zhou,et al.  Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[22]  Fumihiko Kannari,et al.  Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces , 2002 .

[23]  Saulius Juodkazis,et al.  Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses , 2003 .

[24]  Shuhei Tanaka,et al.  Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. , 2004, Optics express.

[25]  Nobuo Nishida,et al.  Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. , 2006, Optics letters.

[26]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[27]  Stuart Edwardson,et al.  High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator , 2008 .

[28]  Jun Amako,et al.  Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements. , 2002, Optics letters.

[29]  Yoshio Hayasaki,et al.  Sparse-exposure technique in holographic two-photon polymerization. , 2008, Optics express.

[30]  Kazuyoshi Itoh,et al.  Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses. , 2004, Optics letters.

[31]  A J Taylor,et al.  Adaptive control of femtosecond pulse propagation in optical fibers. , 2001, Optics letters.

[32]  Andreas Tünnermann,et al.  Hybrid optics for focusing ultrashort laser pulses. , 2006, Optics letters.

[33]  P. Ormos,et al.  Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. , 2007, Optics express.

[34]  Saulius Juodkazis,et al.  Femtosecond laser microfabrication of periodic structures using a microlens array , 2005 .

[35]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[36]  Nobuo Nishida,et al.  Variable holographic femtosecond laser processing by use of a spatial light modulator , 2005 .