Lattice-Boltzmann Simulations of Particle-Fluid Suspensions

This paper reviews applications of the lattice-Boltzmann method to simulations of particle-fluid suspensions. We first summarize the available simulation methods for colloidal suspensions together with some of the important applications of these methods, and then describe results from lattice-gas and lattice-Boltzmann simulations in more detail. The remainder of the paper is an update of previously published work,(69, 70) taking into account recent research by ourselves and other groups. We describe a lattice-Boltzmann model that can take proper account of density fluctuations in the fluid, which may be important in describing the short-time dynamics of colloidal particles. We then derive macro-dynamical equations for a collision operator with separate shear and bulk viscosities, via the usual multi-time-scale expansion. A careful examination of the second-order equations shows that inclusion of an external force, such as a pressure gradient, requires terms that depend on the eigenvalues of the collision operator. Alternatively, the momentum density must be redefined to include a contribution from the external force. Next, we summarize recent innovations and give a few numerical examples to illustrate critical issues. Finally, we derive the equations for a lattice-Boltzmann model that includes transverse and longitudinal fluctuations in momentum. The model leads to a discrete version of the Green–Kubo relations for the shear and bulk viscosity, which agree with the viscosities obtained from the macro-dynamical analysis. We believe that inclusion of longitudinal fluctuations will improve the equipartition of energy in lattice-Boltzmann simulations of colloidal suspensions.

[1]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[2]  H. Brenner The slow motion of a sphere through a viscous fluid towards a plane surface , 1961 .

[3]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[4]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[5]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[6]  R. G. Cox The motion of suspended particles almost in contact , 1974 .

[7]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[8]  R. Cukier,et al.  Kinetic theory of the hydrodynamic interaction between two particles , 1981 .

[9]  Andreas Acrivos,et al.  Slow flow past periodic arrays of cylinders with application to heat transfer , 1982 .

[10]  David J. Jeffrey,et al.  Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow , 1984, Journal of Fluid Mechanics.

[11]  C. Beenakker The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion) , 1984 .

[12]  Russel E. Caflisch,et al.  Variance in the sedimentation speed of a suspension , 1985 .

[13]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[14]  Orszag,et al.  Reynolds number scaling of cellular automaton hydrodynamics. , 1986, Physical review letters.

[15]  John F. Brady,et al.  Self-diffusion of Brownian particles in concentrated suspensions under shear , 1987 .

[16]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[17]  Louis J. Durlofsky,et al.  Dynamic simulation of hydrodynamically interacting particles , 1987, Journal of Fluid Mechanics.

[18]  Daniel H. Rothman Cellular-automaton Fluids: A Model For Flow In Porous Media , 1987 .

[19]  Anthony J. C. Ladd,et al.  Hydrodynamic interactions in a suspension of spherical particles , 1988 .

[20]  A. Fogelson,et al.  A fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles , 1988 .

[21]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[22]  Ladd,et al.  Application of lattice-gas cellular automata to the Brownian motion of solids in suspension. , 1988, Physical review letters.

[23]  Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. , 1989, Physical review letters.

[24]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[25]  Dynamics of colloidal dispersions via lattice-gas models of an incompressible fluid , 1989 .

[26]  de Kruif CG,et al.  Linear viscoelastic behavior of dense hard-sphere dispersions. , 1989, Physical review. A, General physics.

[27]  C. Kruif,et al.  Hard‐sphere Colloidal Dispersions: The Scaling of Rheological Properties with Particle Size, Volume Fraction, and Shear Rate , 1989 .

[28]  C. E. Leith,et al.  Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer , 1990 .

[29]  Daan Frenkel,et al.  Dissipative hydrodynamic interactions via lattice‐gas cellular automata , 1990 .

[30]  Maret,et al.  Multiple light scattering from concentrated, interacting suspensions. , 1990, Physical review letters.

[31]  U. Frisch,et al.  Low-viscosity lattice gases , 1990 .

[32]  Pinhas Z. Bar-Yoseph,et al.  The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders , 1990 .

[33]  D. Levermore,et al.  A Knudsen layer theory for lattice gases , 1991 .

[34]  Anthony J. C. Ladd,et al.  Hydrodynamic transport coefficients of random dispersions of hard spheres , 1990 .

[35]  Ladd,et al.  Self-diffusion of colloidal particles in a two-dimensional suspension: Are deviations from Fick's law experimentally observable? , 1991, Physical review letters.

[36]  Eric S. G. Shaqfeh,et al.  Screening in sedimenting suspensions , 1991, Journal of Fluid Mechanics.

[37]  U. Frisch,et al.  Low-viscosity lattice gases , 1990 .

[38]  B. Fornberg Steady incompressible flow past a row of circular cylinders , 1991, Journal of Fluid Mechanics.

[39]  Müller,et al.  Scaling of transient hydrodynamic interactions in concentrated suspensions. , 1992, Physical review letters.

[40]  Shiyi Chen,et al.  Lattice Boltzmann computational fluid dynamics in three dimensions , 1992 .

[41]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[42]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[43]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[44]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[45]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[46]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  John F. Brady,et al.  Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid , 1993, Journal of Fluid Mechanics.

[48]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[49]  C. Pozrikidis,et al.  On the transient motion of ordered suspensions of liquid drops , 1993, Journal of Fluid Mechanics.

[50]  Ladd Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation. , 1993, Physical review letters.

[51]  J. Brady The rheological behavior of concentrated colloidal dispersions , 1993 .

[52]  B. Alder,et al.  Analysis of the lattice Boltzmann treatment of hydrodynamics , 1993 .

[53]  Donald Ziegler,et al.  Boundary conditions for lattice Boltzmann simulations , 1993 .

[54]  Daniel D. Joseph,et al.  Aggregation and dispersion of spheres falling in viscoelastic liquids , 1994 .

[55]  C. G. Hoover,et al.  Molecular dynamics, smoothed-particle applied mechanics, and irreversibility , 1994 .

[56]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[57]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[58]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[59]  James J. Feng,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation , 1994, Journal of Fluid Mechanics.

[60]  J. Hansen,et al.  On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction coefficient , 1994 .

[61]  R. C. Ball,et al.  THE PATHOLOGICAL BEHAVIOUR OF SHEARED HARD SPHERES WITH HYDRODYNAMIC INTERACTIONS , 1995 .

[62]  J. Higdon,et al.  A spectral boundary element approach to three-dimensional Stokes flow , 1995, Journal of Fluid Mechanics.

[63]  Chahid Kamel Ghaddar,et al.  On the permeability of unidirectional fibrous media: A parallel computational approach , 1995 .

[64]  Cyrus K. Aidun,et al.  Lattice Boltzmann simulation of solid particles suspended in fluid , 1995 .

[65]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[66]  Elisabeth Guazzelli,et al.  EFFECT OF THE VESSEL SIZE ON THE HYDRODYNAMIC DIFFUSION OF SEDIMENTING SPHERES , 1995 .

[67]  Behrend Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Segrè,et al.  Short-time Brownian motion in colloidal suspensions: Experiment and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  C. P. Lowe,et al.  Long-time tails in angular momentum correlations , 1995 .

[70]  J. Brady,et al.  Stokesian Dynamics simulation of Brownian suspensions , 1996, Journal of Fluid Mechanics.

[71]  Short-time dynamics of colloidal suspensions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  Ladd,et al.  Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres. , 1996, Physical review letters.

[73]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[74]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[75]  Sanjeev R. Rastogi,et al.  Rheology, self‐diffusion, and microstructure of charged colloids under simple shear by massively parallel nonequilibrium Brownian dynamics , 1996 .

[76]  Anthony J. C. Ladd,et al.  Moderate Reynolds number flows through periodic and random arrays of aligned cylinders , 1996, Journal of Fluid Mechanics.

[77]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[78]  A. Sangani,et al.  An O(N) algorithm for Stokes and Laplace interactions of particles , 1996 .

[79]  D. d'Humières,et al.  Local second-order boundary methods for lattice Boltzmann models , 1996 .

[80]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[81]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[82]  Robin Ball,et al.  A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces , 1997 .

[83]  Paul M. Chaikin,et al.  Long-range correlations in sedimentation , 1997 .

[84]  R. Verberg,et al.  Viscosity of colloidal suspensions , 1996, chao-dyn/9606008.

[85]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[86]  J. Georgiadis,et al.  An Evaluation of the Bounce-Back Boundary Condition for Lattice Boltzmann Simulations , 1997 .

[87]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[88]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[89]  A. Ladd Sedimentation of homogeneous suspensions of non-Brownian spheres , 1997 .

[90]  John F. Brady,et al.  Microstructure of strongly sheared suspensions and its impact on rheology and diffusion , 1997, Journal of Fluid Mechanics.

[91]  Hudong Chen VOLUMETRIC FORMULATION OF THE LATTICE BOLTZMANN METHOD FOR FLUID DYNAMICS : BASIC CONCEPT , 1998 .

[92]  Hudong Chen,et al.  Realization of Fluid Boundary Conditions via Discrete Boltzmann Dynamics , 1998 .

[93]  Bruce J. Ackerson,et al.  Analogies between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers , 1998 .

[94]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[95]  SCREENED AND UNSCREENED PHASES IN SEDIMENTING SUSPENSIONS , 1998, cond-mat/9801164.

[96]  R. Jones,et al.  Image representation of a spherical particle near a hard wall , 1998 .

[97]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[98]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[99]  Li-Shi Luo,et al.  Unified Theory of Lattice Boltzmann Models for Nonideal Gases , 1998 .

[100]  Michael P. Brenner,et al.  Screening mechanisms in sedimentation , 1998 .

[101]  Dewei Qi,et al.  Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows , 1999, Journal of Fluid Mechanics.

[102]  Wei Shyy,et al.  An accurate curved boundary treatment in the lattice Boltzmann method , 1999 .

[103]  Wei Shyy,et al.  Regular Article: An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method , 1999 .

[104]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[105]  R. Phillips,et al.  The effect of sphere–wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells , 1999 .

[106]  A. Ladd,et al.  Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[107]  Patrick J. Fox,et al.  A pore‐scale numerical model for flow through porous media , 1999 .

[108]  Robert H. Davis,et al.  An Efficient Algorithm for Hydrodynamical Interaction of Many Deformable Drops , 2000 .

[109]  J. Brady,et al.  Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation , 2000, Journal of Fluid Mechanics.

[110]  Ladd,et al.  Lattice-boltzmann model with sub-grid-scale boundary conditions , 2000, Physical review letters.

[111]  Jussi Timonen,et al.  Hydrodynamical forces acting on particles in a two-dimensional flow near a solid wall , 2000 .

[112]  C. Lowe,et al.  Simulating solid colloidal particles using the lattice-Boltzmann method , 2000 .

[113]  J. C. Luke Decay of velocity fluctuations in a stably stratified suspension , 2000 .

[114]  Robin Ball,et al.  Shear thickening and order–disorder effects in concentrated colloids at high shear rates , 2000 .

[115]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[116]  A. Ladd,et al.  Moderate-Reynolds-number flows in ordered and random arrays of spheres , 2001, Journal of Fluid Mechanics.

[117]  A. Ladd,et al.  Effects of container walls on the velocity fluctuations of sedimenting spheres. , 2001, Physical review letters.

[118]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[119]  D. J. O H Accelerated Stokesian Dynamics simulations , 2022 .