Nonlinear lift control at high speed and high angle of attack using vortex flow technology

Nonlinear lift control at subsonic, transonic and low supersonic speeds owes its origin to the separated but organized vortical flows interacting with the wing upper surface. Since most of this flow originates near the wing or control-surface leading-edge, a variety of devices have been studied experimentally which interact with and/or control this flow in order to gain a beneficial effect. The benefits (effects) originally studied were only associated with lift enhancement. Whereas, now the studied benefits encompass performance increase, attention to changes in trimmed conditions and longitudinal stability, improvements in lateral stability, and the attendant variation with changing Mach number. For those devices that can be theoretically modeled, state-of-the-art computer codes have been used for device design and/or analysis. Comparisons at design and off-design conditions are presented for validation purposes.