Exterior splashes and linear sets of rank 3

In PG ( 2 , q 3 ) , let π be a subplane of order q that is exterior to ? ∞ . The exterior splash of π is defined to be the set of q 2 + q + 1 points on ? ∞ that lie on a line of π . This article investigates properties of an exterior order- q -subplane?and its exterior splash. We show that the following objects are projectively equivalent: exterior splashes, covers of the circle geometry C G ( 3 , q ) , Sherk surfaces of size q 2 + q + 1 , and scattered linear sets of rank 3. We compare our construction of exterior splashes with the projection construction of a linear set. We give a geometric construction of the two different families of sublines in an exterior splash, and compare them to the known families of sublines in a scattered linear set of rank 3.

[1]  The Geometry of GF(q 3) , 1986, Canadian Journal of Mathematics.

[2]  Michel Lavrauw,et al.  Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..

[3]  Susan G. Barwick,et al.  An investigation of the tangent splash of a subplane of $$\mathrm{PG}(2,q^3)$$PG(2,q3) , 2015, Des. Codes Cryptogr..

[4]  R. H. Bruck Circle geometry in higher dimensions. II , 1973 .

[5]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[6]  An investigation of the tangent splash of a subplane of PG(2,q^3) , 2013 .

[7]  Wen-Ai Jackson,et al.  A characterisation of tangent subplanes of PG(2, q3) , 2014, Des. Codes Cryptogr..

[8]  Nicola Durante,et al.  Scattered linear sets generated by collineations between pencils of lines , 2014 .

[9]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[10]  Susan G. Barwick,et al.  The tangent splash in PG(6, q) , 2015, Discret. Math..

[11]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[12]  J. Fisher,et al.  Projective bundles , 1994 .

[13]  G. Ebert,et al.  Circle geometry and three-dimensional subregular translation planes , 2005 .

[14]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[15]  Michel Lavrauw,et al.  Subgeometries and linear sets on a projective line , 2014, Finite Fields Their Appl..

[16]  Michel Lavrauw,et al.  On linear sets on a projective line , 2010, Des. Codes Cryptogr..