Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs

We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

[1]  S. Adachi,et al.  Chemical Etching Characteristics of GaAs(100) Surfaces in Aqueous HF Solutions , 2000 .

[2]  Zhang-Kai Zhou,et al.  Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. , 2011, Nano letters.

[3]  Gregory J. Salamo,et al.  Design of Nanostructure Complexes by Droplet Epitaxy , 2009 .

[4]  Giacomo Mariani,et al.  Patterned radial GaAs nanopillar solar cells. , 2011, Nano letters.

[5]  Jingli Luo,et al.  Formation of As2O3 during anodic dissolution of GaAs , 2000 .

[6]  A. Stemmann,et al.  Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces , 2008 .

[7]  S. Sanguinetti,et al.  Optical transitions in quantum ring complexes , 2005, cond-mat/0509625.

[8]  Kazuaki Sakoda,et al.  Self-assembly of concentric quantum double rings. , 2005, Nano letters.

[9]  R. Brendel,et al.  Formation of mesoporous gallium arsenide for lift-off processes by electrochemical etching , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[10]  Modeling and Experimental Identification of Cracks in Porous Materials During Drying , 2013 .

[11]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[12]  J. A. Liddle,et al.  Crystallographic aspects of pore formation in gallium arsenide and silicon , 1997 .

[13]  Hugh S. Isaacs,et al.  Initiation and Formation of Porous GaAs , 1996 .

[14]  Han-Don Um,et al.  Electrochemically etched pores and wires on smooth and textured GaAs surfaces , 2011 .

[15]  P. Komninou,et al.  Misfit dislocation reduction in InGaAs epilayers grown on porous GaAs substrates , 2014 .

[16]  Phl Peter Notten The Etching of InP in HCl Solutions: A Chemical Mechanism , 1984 .

[17]  Lars Samuelson,et al.  A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[18]  H. Gerischer,et al.  Zum Mechanismus der Auflösung von Galliumarsenid durch Oxydationsmittel , 1969 .

[19]  M. Huang,et al.  First-principles study of GaAs(001)-β2(2×4) surface oxidation and passivation with H, Cl, S, F, and GaO , 2010 .

[20]  R. Memming,et al.  Electrochemical properties of gallium phosphide in aqueous solutions , 1968 .

[21]  J. Grym,et al.  Epitaxial growth on porous GaAs substrates , 2013 .

[22]  S. Gradečak,et al.  Self-Seeded Growth of GaAs Nanowires by Metal–Organic Chemical Vapor Deposition , 2015 .

[23]  V. Aimez,et al.  Mesoporous germanium morphology transformation for lift-off process and substrate re-use , 2013 .

[24]  V. Aimez,et al.  Control of mesoporous silicon initiation by cathodic passivation , 2013 .

[25]  W. Hassen,et al.  GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution , 2015 .

[26]  R. Braive,et al.  Inductively coupled plasma etching of GaAs suspended photonic crystal cavities , 2009 .

[27]  R. Bozorth THE CRYSTAL STRUCTURES OF THE CUBIC FORMS OF ARSENIOUS AND ANTIMONOUS OXIDES , 1923 .

[28]  David J. Lockwood,et al.  Visible photoluminescence from porous GaAs , 1996 .

[29]  C. Bradley,et al.  Electrochemical nanostructuring of n-GaAs photoelectrodes. , 2013, ACS nano.

[30]  Y. Okada,et al.  Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth , 2012 .

[31]  E. Pop,et al.  Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. , 2010, Nano letters.

[32]  R. Brendel,et al.  Mesoporous GaAs double layers for layer transfer processes , 2009 .

[33]  S. Sanguinetti,et al.  Self-assembled GaAs/AlGaAs coupled quantum ring-disk structures by droplet epitaxy , 2010, Nanotechnology.

[34]  P. Ballirano,et al.  Refinement of the crystal structure of arsenolite, AS2O3 , 2002 .

[35]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[36]  David J. Lockwood,et al.  Optical properties of porous GaAs , 1999 .

[37]  M. Salmeron,et al.  Adsorption of Water on NaCl (100) Surfaces: Role of Atomic Steps , 1997 .

[38]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[39]  S. Mendach,et al.  Mechanism and applications of local droplet etching , 2011 .

[40]  Lars Samuelson,et al.  Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. , 2012, ACS nano.

[41]  A. Salehi,et al.  Rapid Response of Au/Porous-GaAs Humidity Sensor at Room Temperature , 2006, 2006 Conference on Optoelectronic and Microelectronic Materials and Devices.

[42]  Yukio Tanaka,et al.  Electronic structure and spontaneous internal field around nonmagnetic impurities in spin-triplet chiral p-wave superconductors , 2005 .

[43]  H. Gerischer Electrolytic decomposition and photodecomposition of compound semiconductors in contact with electrolytes , 1978 .

[44]  G. Salamo,et al.  InGaAs quantum dot molecules around self-assembled GaAs nanomound templates , 2006 .

[45]  John A Rogers,et al.  Formation of high aspect ratio GaAs nanostructures with metal-assisted chemical etching. , 2011, Nano letters.

[46]  H. Gerischer,et al.  The mechanisms of the decomposition of semiconductors by electrochemical oxidation and reduction , 1968 .

[47]  N. J. Smeenk,et al.  Arsenic Formation on GaAs during Etching in HF Solutions: Relevance for the Epitaxial Lift-Off Process , 2013 .