On the intractability of permuting a block code to minimize trellis complexity

An important problem in the theory and application of block code trellises is to find a coordinate permutation of a given code to minimize the trellis complexity. We show that the problem of finding a coordinate permutation that minimizes the number of vertices at a given depth in the minimal trellis for a binary linear block code is NP-complete.

[1]  Alexander Vardy,et al.  Maximum-Likelihood Soft Decision Decoding of Bch Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[2]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[3]  Shuzo Yajima,et al.  The Complexity of the Optimal Variable Ordering Problems of Shared Binary Decision Diagrams , 1993, ISAAC.

[4]  G. David Forney,et al.  Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.

[5]  Shu Lin,et al.  On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes , 1993, IEEE Trans. Inf. Theory.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  S. Louis Hakimi,et al.  Cut-set matrices and linear codes (Corresp.) , 1965, IEEE Transactions on Information Theory.

[8]  N.R. Malik,et al.  Graph theory with applications to engineering and computer science , 1975, Proceedings of the IEEE.

[9]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[10]  S. Louis Hakimi,et al.  Graph theoretic error-correcting codes , 1968, IEEE Trans. Inf. Theory.

[11]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[12]  Frank R. Kschischang,et al.  On the trellis structure of block codes , 1994, IEEE Trans. Inf. Theory.

[13]  Moni Naor,et al.  The hardness of decoding linear codes with preprocessing , 1990, IEEE Trans. Inf. Theory.

[14]  Shu Lin,et al.  On complexity of trellis structure of linear block codes , 1993, IEEE Trans. Inf. Theory.

[15]  F. Kschischang,et al.  A Heuristic for Ordering a Linear Block Code to Minimize Trellis State Complexity , 1994 .

[16]  S. Louis Hakimi,et al.  On the complexity of some coding problems , 1981, IEEE Trans. Inf. Theory.

[17]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[18]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[19]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[20]  Douglas J. Muder Minimal trellises for block codes , 1988, IEEE Trans. Inf. Theory.