On linear and circular structure of (claw, net)-free graphs

We prove that every (claw, net)-free graph contains an induced doubly dominating cycle or a dominating pair. Moreover, using LexBFS we present a linear time algorithm which, for a given (claw, net)-free graph, finds either a dominating pair or an induced doubly dominating cycle. We show also how one can use structural properties of (claw, net)-free graphs to solve efficiently the domination, independent domination, and independent set problems on these graphs.

[1]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[2]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[3]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[4]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[5]  Peter L. Hammer,et al.  The struction of a graph: Application toCN-free graphs , 1985, Comb..

[6]  Dieter Kratsch,et al.  Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..

[7]  Feodor F. Dragan,et al.  Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs , 2000, SIAM J. Comput..

[8]  Feodor F. Dragan,et al.  Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs , 1999, SIAM J. Comput..

[9]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[10]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[11]  Peter C. Fishburn,et al.  A NEW CHARACTERIZATION OF PARTIAL ORDERS OF DIMENSION TWO , 1970 .

[12]  Alan Tucker,et al.  Characterizing circular-arc graphs , 1970 .

[13]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[14]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[15]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[16]  Dieter Kratsch,et al.  On claw-free asteroidal triple-free graphs , 1999, Discret. Appl. Math..

[17]  S. Olariu,et al.  On the semi-perfect elimination , 1988 .

[18]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[19]  Robert B. Allan,et al.  On domination and independent domination numbers of a graph , 1978, Discret. Math..

[20]  Stephan Olariu,et al.  A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph , 1995, Inf. Process. Lett..

[21]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[22]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[23]  F. Bruce Shepherd,et al.  Hamiltonicity in claw-free graphs , 1990, J. Comb. Theory, Ser. B.

[24]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[25]  Feodor F. Dragan,et al.  LexBFS-orderings and powers of chordal graphs , 1997, Discret. Math..

[26]  Dieter Kratsch,et al.  Independent Sets in Asteroidal Triple-Free Graphs , 1997, ICALP.

[27]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[28]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[29]  Ron Y. Pinter,et al.  Trapezoid graphs and their coloring , 1988, Discret. Appl. Math..

[30]  Stephan Olariu,et al.  Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs , 1995, SIAM J. Comput..

[31]  Clyde L. Monma,et al.  Tolerance graphs , 1984, Discret. Appl. Math..