Pattern analysis in branching and axillary flowering sequences.

In the architectural approach to the study of plants, a major issue is to analyse branching and axillary flowering patterns. Due to the structured expression of the branching process and the noisy character of the observed patterns, we propose an analysis framework which is both structural and probabilistic. Data take the form of sequences which naturally represent the underlying structural information of branching and axillary flowering patterns and allow the application of a large number of methods ranging from exploratory analysis to stochastic modeling. The primary aim of the proposed analysis methods is to reveal patterns not directly apparent in the data, and thus to deepen our biological understanding of the underlying mechanisms that control the branching and the axillary flowering of plants over time and space. The proposed approach is illustrated using a set of examples corresponding to different plant species and different biological or agronomic objectives.

[1]  H. Jeffreys,et al.  Theory of probability , 1896 .

[2]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[3]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[4]  W. Ruhland Encyclopedia of plant physiology. , 1958 .

[5]  P. Billingsley,et al.  Statistical Methods in Markov Chains , 1961 .

[6]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[7]  P. Champagnat Physiologie de la croissance et de l’inhibition des bourgeons: Dominance apicale et phénomènes analogues , 1965 .

[8]  R. Fulford The Morphogenesis of Apple BudsI. The Activity of the Apical Meristem , 1966 .

[9]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[10]  Peter H. Raven,et al.  Biology of plants , 1976 .

[11]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[12]  P. Tomlinson,et al.  Tropical Trees and Forests: An Architectural Analysis , 1978 .

[13]  James White,et al.  THE PLANT AS A METAPOPULATION , 1979 .

[14]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[15]  R. Katz On Some Criteria for Estimating the Order of a Markov Chain , 1981 .

[16]  A. Agresti Analysis of Ordinal Categorical Data , 1985 .

[17]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[18]  A. Poritz,et al.  Hidden Markov models: a guided tour , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[19]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[20]  Yann Guédon,et al.  Explicit state occupancy modelling by hidden semi-Markov models: application of Derin's scheme , 1990 .

[21]  Philippe De Reffye,et al.  Growth units construction in trees: A stochastic approach , 1991 .

[22]  Daniel Barthélémy,et al.  Levels of organization and repetition phenomena in seed plants , 1991 .

[23]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[24]  Meir Feder,et al.  A universal finite memory source , 1995, IEEE Trans. Inf. Theory.

[25]  P. Guttorp Stochastic modeling of scientific data , 1995 .

[26]  Y. Couder,et al.  Phyllotaxis as a Dynamical Self Organizing Process Part III: The Simulation of the Transient Regimes of Ontogeny , 1996 .

[27]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[28]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[29]  Evelyne Costes,et al.  MODELLING THE ANNUAL SHOOT STRUCTURE OF THE APRICOT TREE (CV LAMBERTIN) IN TERMS OF AXILLARY FLOWERING AND VEGETATIVE GROWTH , 1996 .

[30]  Evelyne Costes,et al.  Modeling the Sylleptic Branching on One-year-old Trunks of Apple Cultivars , 1997 .

[31]  Christophe Godin,et al.  Measuring and analysing plants with the AMAPmod software , 1997 .

[32]  M. Michalewicz Plants to ecosystems: advances in computational life sciences , 1997 .

[33]  Yves Caraglio,et al.  Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires , 1997 .

[34]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[35]  P. D. Reffye,et al.  Modélisation et simulation de l'architecture des végétaux , 1997 .

[36]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[37]  R. F. Lyndon The shoot apical meristem , 1998 .

[38]  Hidden semi-Markov chains : a new tool for analyzing nonstationary discrete sequences , 1998 .

[39]  Godin,et al.  A multiscale model of plant topological structures , 1998, Journal of theoretical biology.

[40]  A STATISTICAL APPROACH FOR ANALYZING SEQUENCES IN FRUIT TREE ARCHITECTURE , 1999 .

[41]  Yann Guédon,et al.  Computational methods for discrete hidden semi‐Markov chains , 1999 .

[42]  W. van der Werf,et al.  Proceedings of the fifth International Symposium on Computer Modelling in Fruit Research and Orchard Management , 1999 .

[43]  P. Bühlmann,et al.  Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .

[44]  Yann Guédon,et al.  Analyzing spatial structures in forest tree architectures. , 1999 .

[45]  Christophe Godin,et al.  Exploration of a plant architecture database with the AMAPmod software illustrated on an apple tree hybrid family , 1999 .

[46]  David R. Anderson,et al.  Model selection and inference : a practical information-theoretic approach , 2000 .

[47]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .