Scalable feedback control of single photon sources for photonic quantum technologies

Large-scale quantum technologies require exquisite control over many individual quantum systems. Typically, such systems are very sensitive to environmental fluctuations, and diagnosing errors via measurements causes unavoidable perturbations. In this work, we present an in situ frequency-locking technique that monitors and corrects frequency variations in single photon sources based on microring resonators. By using the same classical laser fields required for photon generation as probes to diagnose variations in the resonator frequency, our protocol applies feedback control to correct photon frequency errors in parallel to the optical quantum computation without disturbing the physical qubit. We implement our technique on a silicon photonic device and demonstrate sub 1 pm frequency stabilization in the presence of applied environmental noise, corresponding to a fractional frequency drift of <1% of a photon linewidth. Using these methods, we demonstrate feedback-controlled quantum state engineering. By distributing a single local oscillator across a single chip or network of chips, our approach enables frequency locking of many single photon sources for large-scale photonic quantum technologies.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  권경학,et al.  4 , 1906, Undiscovered Country.

[6]  Jeremy L O'Brien,et al.  High-extinction ratio integrated photonic filters for silicon quantum photonics. , 2017, Optics letters.

[7]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[8]  D. Englund,et al.  A scalable multi-photon coincidence detector based on superconducting nanowires , 2017, Nature Nanotechnology.

[9]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[11]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[12]  P. Alsing,et al.  Truly unentangled photon pairs without spectral filtering. , 2017, Optics letters.

[13]  Ellen Schelew,et al.  Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation , 2014, Nature Communications.

[14]  O. Moussa,et al.  Robust and efficient in situ quantum control , 2014, 1409.3172.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[17]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[18]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[19]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[20]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[21]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[22]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[23]  Timothy C. Ralph,et al.  Error tolerance of the boson-sampling model for linear optics quantum computing , 2011, 1111.2426.

[24]  Zach DeVito,et al.  Opt , 2017 .

[25]  Wolfram H. P. Pernice,et al.  Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate , 2013, Scientific Reports.

[26]  J. O'Brien Optical Quantum Computing , 2007, Science.

[27]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[28]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[29]  Photon , 2017, Radiopaedia.org.

[30]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[31]  Ray T. Chen,et al.  Mid-infrared silicon photonic waveguides and devices [Invited] , 2018 .

[32]  Ming C. Wu,et al.  Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers , 2016 .

[33]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[34]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[35]  Kazumi Wada,et al.  Mid-infrared integrated photonics on silicon: a perspective , 2017 .

[36]  S. Chu,et al.  Surface-roughness-induced contradirectional coupling in ring and disk resonators. , 1997, Optics letters.

[37]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[38]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[39]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[40]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[41]  Huihui Lu,et al.  Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices , 2016 .

[42]  T. J. Sleboda,et al.  High Contrast 40gbit/s Optical Modulation in Silicon References and Links , 2022 .

[43]  The influence of thermal and free carrier dispersion effects on all-optical wavelength conversion in a silicon racetrack-shaped microring resonator , 2016 .

[44]  Y. Vlasov,et al.  Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. , 2013, Optics express.

[45]  John E. Sipe,et al.  How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices , 2012 .

[46]  Valery Shchesnovich,et al.  Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer , 2013, 1311.6796.

[47]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[48]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[49]  Michael Hochberg,et al.  Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing , 2016, Scientific Reports.

[50]  W. Marsden I and J , 2012 .

[51]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[52]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[53]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[54]  Christopher C. Tison,et al.  Linear programmable nanophotonic processors , 2018, Optica.

[55]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[56]  Keren Bergman,et al.  Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals , 2014, Journal of Lightwave Technology.

[57]  M. Pant,et al.  Temporally and spectrally multiplexed single photon source using quantum feedback control for scalable photonic quantum technologies , 2017, New Journal of Physics.

[58]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[59]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.