On the category of lattice-valued bornological vector spaces
暂无分享,去创建一个
[1] Lotfi A. Zadeh,et al. Fuzzy Sets , 1996, Inf. Control..
[2] Giangiacomo Gerla,et al. Lattice valued algebras. , 1987 .
[3] S. Vickers. Topology via Logic , 1989 .
[4] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[5] K. I. Rosenthal. Quantales and their applications , 1990 .
[6] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[7] Stephen E. Rodabaugh,et al. Categorical Frameworks for Stone Representation Theories , 1992 .
[8] Alexander P. Sostak,et al. Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .
[9] Stephen E. Rodabaugh,et al. Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .
[10] Stephen E. Rodabaugh,et al. Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .
[11] J W Baish,et al. Fractals and cancer. , 2000, Cancer research.
[12] Gunther Jäger,et al. A CATEGORY OF L-FUZZY CONVERGENCE SPACES , 2001 .
[13] Luis Barreira,et al. Hausdorff Dimension in Convex Bornological Spaces , 2002 .
[14] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[15] Torsten Mattfeldt,et al. Classification of Binary Spatial Textures Using Stochastic Geometry, Nonlinear Deterministic Analysis and Artificial Neural Networks , 2003, Int. J. Pattern Recognit. Artif. Intell..
[16] Stephen Ernest Rodabaugh,et al. Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..
[17] Sergey A. Solovyov,et al. Variable-basis topological systems versus variable-basis topological spaces , 2010, Soft Comput..
[18] S. Solovyov. Localification of variable-basis topological systems , 2011 .
[19] A. Šostaks,et al. TOWARDS THE THEORY OF L-BORNOLOGICAL SPACES , 2011 .
[20] S. Solovyov. ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS , 2011 .
[21] Sergey A. Solovyov,et al. On a generalization of the concept of state property system , 2011, Soft Comput..
[22] T. Mattfeldt,et al. TESTING HISTOLOGICAL IMAGES OF MAMMARY TISSUES ON COMPATIBILITY WITH THE BOOLEAN MODEL OF RANDOM SETS , 2011 .
[23] Sergey A. Solovyov,et al. Sobriety and spatiality in categories of lattice-valued algebras , 2012, Fuzzy Sets Syst..
[24] Austin Melton,et al. Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..
[25] Sergey A. Solovyov,et al. Categorical foundations of variety-based topology and topological systems , 2012, Fuzzy Sets Syst..
[26] Austin Melton,et al. Formal concept analysis and lattice-valued Chu systems , 2013, Fuzzy Sets Syst..
[27] Jan Paseka,et al. Lattice-valued bornological systems , 2015, Fuzzy Sets Syst..
[28] Jan Paseka,et al. On a topological universe of L-bornological spaces , 2016, Soft Comput..