Neurotoxic effect of cypermethrin and protective role of resveratrol in Wistar rats

Background: Cypermethrin is a synthetic pyrethroid commonly used in agriculture, veterinary, and household insects/pests management. Resveratrol a polyphenolic phytoalexin abundantly found in grapes and red wine is a potent antioxidant and cytoprotective agent. Objectives: Neurotoxicity of cypermethrin is well-known. The aim of this study was to evaluate neurotoxic effects of cypermethrin and protective role of resveratrol in Wistar rats. Materials and Methods: Thirty male Wistar rats were divided into five groups. Group A served as control. Rats of Group B were treated with cypermethrin at the dose of 3.83 mg/kg body weight (bw) for 7 days. Group C and D were post- and pretreatment of resveratrol (20 mg/kg bw) along with cypermethrin exposure. In Group E, resveratrol served as control. Results: Cypermethrin treated group showed elevation in lipid peroxidation (LPO 83.99%) and inhibition in glutathione (GSH 12.81%), superoxide dismutase (SOD 17.08%), catalase (CAT 11.51%), glutathione-S-transferase (GST 12.12%), glutathione reductase (GR 77.55%), glutathione peroxidase (GPX 23.78 %), total protein (42.95%), and acetylcholinesterase (AChE) activity (47.64%) in rat brain. Posttreatment, pretreatment, and treatment with resveratrol reversed the toxic effect induced by cypermethrin. Conclusion: Our findings strongly suggest that cypermethrin-induced neurotoxicity may be mediated through free radical formation, reduced antioxidant defense mechanism, and inhibition of acetylcholinestrase (AChE) activity. Cypermethrin may be showing AChE inhibitory activity by interacting with the anionic substrate binding site. Administration of resveratrol increased AChE activity and ameliorated cypermethrin-induced brain damage in Wistar rats.