Unconditional superconvergent analysis of a new mixed finite element method for Ginzburg–Landau equation

[1]  C. D. Levermore,et al.  Weak and strong solutions of the complex Ginzburg-Landau equation , 1994 .

[2]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[3]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[4]  Mehdi Dehghan,et al.  A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation , 2012 .

[5]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[6]  Hongjun Gao,et al.  Asymptotics for the Generalized Two-Dimensional Ginzburg–Landau Equation , 2000 .

[7]  B. Guo,et al.  Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation , 2011 .

[8]  Zhi‐zhong Sun,et al.  Convergence analysis of a linearized Crank–Nicolson scheme for the two‐dimensional complex Ginzburg–Landau equation , 2013 .

[9]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[10]  Darryl D. Holm,et al.  Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .

[11]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[12]  Edward H. Twizell,et al.  Fourier spectral approximation to long-time behaviour of the derivative three-dimensional Ginzburg-Landau equation , 2007 .

[13]  Qishao Lu,et al.  A linear discrete scheme for the Ginzburg–Landau equation , 2008, Int. J. Comput. Math..

[14]  Jean-Michel Ghidaglia,et al.  Dimension of the attractors associated to the Ginzburg-Landau partial differential equation , 1987 .

[15]  P. Holmes,et al.  Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .

[16]  Min Tang,et al.  On the Time Splitting Spectral Method for the Complex Ginzburg-Landau Equation in the Large Time and Space Scale Limit , 2008, SIAM J. Sci. Comput..

[17]  Bixiang Wang,et al.  Finite dimensional behaviour for the derivative Ginzburg-Landau equation in two spatial dimensions , 1995 .

[18]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[19]  Dongyang Shi,et al.  Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation , 2017, Appl. Math. Comput..

[20]  Dongyang Shi,et al.  Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element , 2017, Appl. Math. Comput..

[21]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[22]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .

[23]  Chaoxia Yang,et al.  A linearized Crank–Nicolson–Galerkin FEM for the time‐dependent Ginzburg–Landau equations under the temporal gauge , 2014 .

[24]  Weiwei Sun,et al.  An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity , 2015, J. Comput. Phys..

[25]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..