Unconditional superconvergent analysis of a new mixed finite element method for Ginzburg–Landau equation
暂无分享,去创建一个
Qian Liu | Dongyang Shi | Qian Liu | D. Shi
[1] C. D. Levermore,et al. Weak and strong solutions of the complex Ginzburg-Landau equation , 1994 .
[2] Dongyang Shi,et al. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.
[3] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[4] Mehdi Dehghan,et al. A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation , 2012 .
[5] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[6] Hongjun Gao,et al. Asymptotics for the Generalized Two-Dimensional Ginzburg–Landau Equation , 2000 .
[7] B. Guo,et al. Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation , 2011 .
[8] Zhi‐zhong Sun,et al. Convergence analysis of a linearized Crank–Nicolson scheme for the two‐dimensional complex Ginzburg–Landau equation , 2013 .
[9] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[10] Darryl D. Holm,et al. Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .
[11] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.
[12] Edward H. Twizell,et al. Fourier spectral approximation to long-time behaviour of the derivative three-dimensional Ginzburg-Landau equation , 2007 .
[13] Qishao Lu,et al. A linear discrete scheme for the Ginzburg–Landau equation , 2008, Int. J. Comput. Math..
[14] Jean-Michel Ghidaglia,et al. Dimension of the attractors associated to the Ginzburg-Landau partial differential equation , 1987 .
[15] P. Holmes,et al. Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .
[16] Min Tang,et al. On the Time Splitting Spectral Method for the Complex Ginzburg-Landau Equation in the Large Time and Space Scale Limit , 2008, SIAM J. Sci. Comput..
[17] Bixiang Wang,et al. Finite dimensional behaviour for the derivative Ginzburg-Landau equation in two spatial dimensions , 1995 .
[18] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[19] Dongyang Shi,et al. Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation , 2017, Appl. Math. Comput..
[20] Dongyang Shi,et al. Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element , 2017, Appl. Math. Comput..
[21] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[22] Shi Dong-yang,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .
[23] Chaoxia Yang,et al. A linearized Crank–Nicolson–Galerkin FEM for the time‐dependent Ginzburg–Landau equations under the temporal gauge , 2014 .
[24] Weiwei Sun,et al. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity , 2015, J. Comput. Phys..
[25] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..