Asteroid Secular Resonant Proper Elements

Abstract A practical algorithm for the computation of the dynamic evolution of asteroids which are inside or close to a secular resonance has been developed. The results are checked with many numerical simulations of both real and fictitious objects. These tests prove that the algorithm is able to identify the dynamic nature of resonant objects and distinguish between future planet crossers and regular bodies. The short CPU time necessary for its execution makes it a useful tool for studying the mechanisms of meteorite transport to the inner Solar System. For this purpose, the sets of initial conditions which lead to large eccentricity in the v 6 secular resonance are identified. Finally, the dynamic behavior of 44 numbered asteroids very close to the v 6 resonance is analyzed. Only 4 of these asteroids are found in regions dangerous for their stability. A few others become temporary Mars crossers. The rest of them, as 6 Hebe, have a moderate eccentricity during all their quasi-periodic dynamic evolution.