The Solar Orbiter Science Activity Plan

Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed.

D. Plettemeier | J. C. del Toro Iniesta | A. Fludra | C. Verbeeck | S. Gissot | V. Da Deppo | D. Stansby | C. J. Owen | F. Landini | V. Andretta | S. Fineschi | D. Spadaro | M. Pancrazzi | L. Abbo | A. Bemporad | D. Telloni | R. Susino | G. Nicolaou | M. Romoli | J. Schou | T. Appourchaux | L. Gizon | L. van Driel-Gesztelyi | T. Grundy | F. Auchere | M. Haberreiter | L. Etesi | B. Fleck | C. Krafft | T. Dudok de Wit | A. Vourlidas | J. Hirzberger | L. Rodriguez-Garcia | M. Steller | E. Buchlin | B. Cecconi | M. Kretzschmar | G. Tsiropoula | A. Gandorfer | S. D. Bale | I. Leon | D. Verscharen | N. Meyer-Vernet | A. Vaivads | L. Teriaca | L. K. Harra | P. Rochus | M. Maksimovic | J. P. Eastwood | C. Sasso | N. Vilmer | P. Osuna | A. Vecchio | V. Genot | T. Nieves-Chinchilla | A. S. Brun | P. Liewer | I. Zouganelis | A. Retino | G. Hurford | S. Dolei | X. Bonnin | L. Sanchez | I. Kontogiannis | S. Livi | A. Lagg | S. K. Solanki | R. F. Wimmer-Schweingruber | C. Plainaki | D. Berghmans | G. Aulanier | D. Fontaine | D. R. Williams | M. Stangalini | A. Masson | B. Lavraud | A. Fedorov | M. Berthomier | D. Plettemeier | D. Williams | X. Bonnin | S. Fineschi | N. Raouafi | S. Solanki | C. Krafft | V. Deppo | D. Hassler | A. Tsounis | T. Horbury | P. Louarn | C. Owen | A. Vaivads | L. B. Rubio | J. C. D. T. Iniesta | S. Krucker | L. Sorriso-Valvo | A. Gandorfer | A. Lagg | L. Gizon | L. Driel-Gesztelyi | M. Owens | J. Linker | C. Arge | P. Liewer | A. Vourlidas | J. Eastwood | N. Vilmer | B. Lavraud | A. Rouillard | R. Pinto | F. Auchère | R. Wimmer–Schweingruber | J. Souček | P. Rochus | M. Janvier | M. Maksimović | S. Bale | K. Dalmasse | R. Wicks | M. Stangalini | J. Raines | C. Plainaki | S. Livi | V. Génot | B. Cecconi | R. Gómez-Herrero | R. Bučík | F. Carcaboso | S. Lepri | G. Ho | A. Papaioannou | T. Nieves‐Chinchilla | I. Kontogiannis | M. Georgoulis | M. Steller | A. Anastasiadis | Y. Khotyaintsev | T. D. Wit | R. Carr | T. Grundy | T. Wiegelmann | G. Hurford | G. Aulanier | E. Pariat | J. Schou | A. Fedorov | D. Baker | D. Spadaro | M. Romoli | L. Etesi | M. Battaglia | A. Strugarek | S. Musset | O. C. Cyr | H. Gilbert | D. Berghmans | L. Harra | T. Appourchaux | É. Buchlin | L. Dolla | S. Gissot | M. Haberreiter | D. Long | S. Parenti | H. Peter | L. Rodriguez | L. Teriaca | C. Verbeeck | A. Zhukov | J. Hirzberger | I. Zouganelis | K. Bocchialini | A. Fludra | A. Giunta | S. Matthews | P. Young | R. Howard | A. Groof | N. Meyer‐Vernet | N. Jeffrey | V. Krasnoselskikh | A. Brun | G. Nicolaou | D. Telloni | E. Antonucci | C. H. Chen | O. Malandraki | S. Patsourakos | K. Issautier | D. Verscharen | M. Velli | R. Susino | A. Nindos | V. Andretta | L. Matteini | D. Stansby | S. Plunkett | R. Bruno | A. Bemporad | L. Abbo | N. Janitzek | A. Verdini | Š. Štverák | N. Fox | A. Retinò | F. Valentini | O. Alexandrova | D. Perrone | F. Sahraoui | L. Green | B. Fleck | S. Maloney | À. Aran | P. Osuna | H. Reid | E. Antonucci | R. A. Howard | S. Patsourakos | A. Walsh | D. Mueller | J. Rodriiguez-Pacheco | C. Watson | L. Sánchez | J. Lefort | M. Berthomier | J. Buechner | I. Carrasco-Blazquez | I. C. Cangas | L. P. Chitta | T. Chust | R. D’Amicis | R. D. Marco | S. Dolei | F. Lara | F. Felix-Redondo | D. Fontaine | C. Gontikakis | G. Graham | D. Innes | A. James | J. Jenkins | K. Klein | E. P. Kontar | M. Kretzschmar | N. Labrosse | F. Landini | I. Leon | G. Lewis | V. Martínez-Pillet | M. Martinović | A. Masson | K. Moraitis | R. Morton | H. O’Brien | D. Suárez | M. Pancrazzi | L. Rezeau | L. Rodríguez-García | M. Roth | C. Sasso | U. Schuehle | C. Terasa | S. Toledo‐Redondo | G. Tsiropoula | K. Tziotziou | A. Vecchio | L. Sorriso-Valvo | L. Bellot Rubio | D. Orozco Suarez | V. Krasnoselskikh | P. Louarn | K. Bocchialini | D. Baker | S. Krucker | A. Anastasiadis | E. Pariat | A. Nindos | O. Malandraki | M. K. Georgoulis | D. M. Hassler | A. N. Zhukov | R. Carr | A. Aran | A. Papaioannou | K.-L. Klein | A. Verdini | C. Gontikakis | T. Wiegelmann | F. Sahraoui | T. S. Horbury | L. Rezeau | S. P. Plunkett | V. Martinez-Pillet | M. Velli | A. P. Walsh | O. Alexandrova | M. Roth | U. Schuehle | M. Battaglia | C. N. Arge | N. Labrosse | F. Espinosa Lara | H. Reid | A. P. Rouillard | R. F. Pinto | A. Giunta | P. R. Young | H. O'Brien | N. Raouafi | S. T. Lepri | K. Issautier | T. Chust | A. De Groof | D. Mueller | O. C. St Cyr | J. Rodriiguez-Pacheco | C. Watson | J. Lefort | H. R. Gilbert | R. Bruno | J. Buechner | R. Bucik | F. Carcaboso | I. Carrasco-Blazquez | I. Cernuda Cangas | C. H. K. Chen | K. Dalmasse | R. D'Amicis | R. De Marco | L. Dolla | F. Felix-Redondo | N. J. Fox | R. Gomez-Herrero | G. Graham | L. Green | G. C. Ho | D. Innes | A. W. James | N. Janitzek | M. Janvier | N. Jeffrey | J. Jenkins | Y. Khotyaintsev | G. R. Lewis | J. Linker | D. M. Long | S. Maloney | M. Martinovic | S. Matthews | L. Matteini | K. Moraitis | R. J. Morton | S. Musset | M. Owens | S. Parenti | D. Perrone | H. Peter | J. M. Raines | L. Rodriguez | J. Soucek | A. Strugarek | S. Stverak | C. Terasa | S. Toledo-Redondo | A. Tsounis | K. Tziotziou | F. Valentini | R. Wicks | I. Carrasco-Blázquez | D. Súarez | T. D. D. Wit | T. Nieves-chinchilla

[1]  D. T. Farley School of Electrical Engineering. , 1983 .

[2]  Laurent Gizon,et al.  Signal and noise in helioseismic holography , 2018, Astronomy & Astrophysics.

[3]  M. Roth,et al.  Verification of the helioseismic Fourier-Legendre analysis for meridional flow measurements , 2016, 1606.05202.

[4]  E. P. Kontar,et al.  Solar physics with the Square Kilometre Array , 2018, Advances in Space Research.

[5]  P. Bochsler STRUCTURE OF THE SOLAR WIND AND COMPOSITIONAL VARIATIONS , 1998 .

[6]  P. Bochsler,et al.  Structure of the Solar Wind and Compositional Variations , 1998 .

[7]  S. Fineschi,et al.  Coordination within the remote sensing payload on the Solar Orbiter mission , 2020, Astronomy & Astrophysics.

[8]  L. Gizon,et al.  Data compression for local correlation tracking of solar granulation , 2015, 1512.03243.

[9]  C. Mariano,et al.  The Solar Orbiter Heliospheric Imager (SoloHI) , 2020, Astronomy & Astrophysics.

[10]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[11]  Jesper Schou,et al.  Helioseismology with Solar Orbiter , 2014, 1406.5435.

[12]  H. Hudson,et al.  The Yohkoh Mission for High-Energy Solar Physics , 1992, Science.

[13]  X. Bonnin,et al.  Coordination of the in situ payload of Solar Orbiter , 2020, Astronomy & Astrophysics.

[14]  J. Brown,et al.  Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  A. Schad,et al.  A UNIFIED APPROACH TO THE HELIOSEISMIC INVERSION PROBLEM OF THE SOLAR MERIDIONAL FLOW FROM GLOBAL OSCILLATIONS , 2011 .

[16]  P. Astier,et al.  The Solar Orbiter Radio and Plasma Waves (RPW) instrument , 2020, Astronomy & Astrophysics.

[17]  F. Heidecke,et al.  The 1.5 meter solar telescope GREGOR , 2012 .

[18]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[19]  C. Russell,et al.  The Solar Orbiter magnetometer , 2020, Astronomy & Astrophysics.

[20]  V. Domingo,et al.  The SOHO mission: An overview , 1995 .

[21]  C. J. Wolfson,et al.  Trace — The transition region and coronal explorer , 1994 .

[22]  J. Timmer,et al.  GLOBAL HELIOSEISMIC EVIDENCE FOR A DEEPLY PENETRATING SOLAR MERIDIONAL FLOW CONSISTING OF MULTIPLE FLOW CELLS , 2013, 1311.7623.

[23]  Tapio K. Korhonen,et al.  The 1-meter Swedish solar telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[24]  J. C. del Toro Iniesta,et al.  The Polarimetric and Helioseismic Imager on Solar Orbiter , 2019, Astronomy & Astrophysics.

[25]  S. Poedts,et al.  EUHFORIA: European heliospheric forecasting information asset , 2018 .

[26]  S. White,et al.  Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): High-Resolution Interferometric Imaging , 2017, 1704.03236.

[27]  D. Odstrcil,et al.  Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt , 1999 .

[28]  Philip R. Goode,et al.  Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear , 2010 .

[29]  W. Schmidt,et al.  Daniel K. Inouye Solar Telescope: High‐resolution observing of the dynamic Sun , 2016 .

[30]  D. S. Bloomfield,et al.  The Spectrometer/Telescope for Imaging X-rays (STIX) , 2012, Astronomy & Astrophysics.

[31]  Bo Zhang,et al.  New vacuum solar telescope and observations with high resolution , 2014, 1403.6896.

[32]  D. Hathaway The Solar Cycle , 2010, Living reviews in solar physics.

[33]  Giampiero Naletto,et al.  Metis: the Solar Orbiter visible light and ultraviolet coronal imager , 2019, Astronomy & Astrophysics.

[34]  A. Spencer,et al.  The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager , 2020, Astronomy & Astrophysics.

[35]  R. Seguin,et al.  The Interface Region Imaging Spectrograph (IRIS) , 2012, 1401.2491.

[36]  J. Schou,et al.  Global-Oscillation Eigenfunction Measurements of Solar Meridional Flow , 2013 .

[37]  Philippe Louarn,et al.  Models and data analysis tools for the Solar Orbiter mission , 2019, Astronomy & Astrophysics.

[38]  A. M. Hellín,et al.  The Energetic Particle Detector , 2020 .

[39]  Alan J. Lazarus,et al.  The solar wind helium abundance: Variation with wind speed and the solar cycle , 2001 .

[40]  H. Spruit,et al.  Local Helioseismology: Three-Dimensional Imaging of the Solar Interior , 2010, 1001.0930.

[41]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[42]  The SOHO mission: An overview , 1995 .

[43]  N. Raouafi,et al.  Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories , 2020, Astronomy & Astrophysics.

[44]  A. Spencer,et al.  The Solar Orbiter Solar Wind Analyser (SWA) suite , 2020, Astronomy & Astrophysics.

[45]  P. Kletzkine,et al.  Solar Orbiter: Mission and spacecraft design , 2020, Astronomy & Astrophysics.

[46]  S. White,et al.  Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping , 2017, Solar Physics.

[47]  J. C. del Toro Iniesta,et al.  The Solar Orbiter mission , 2020, Optics & Photonics - Optical Engineering + Applications.

[48]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[49]  L. Gizon,et al.  Image compression in local helioseismology , 2014, 1409.4176.

[50]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .