Models and methods of analysis

Structural analysis in nowadays performed electronically with use of appropriate software. This chapter gives criteria to set up numerical models for the entire structure or parts of it. It presents analysis models for the most usual applications, such as single story industrial buildings, but also for other common types of steel structures. It gives methods to incorporate composite slabs and treat composite beams in multi-story buildings and shows how to use sub-models for parts of the structure and more elaborated models for structural details that need special investigation. It then presents methods of analysis including linear and non-linear methods in terms of non-linear material behavior and geometric non-linear behavior, possibly accounting for geometric, structural or equivalent geometric imperfections. The implications of different types of analysis are illustrated for simple structural systems. It outlines the Eurocode provisions concerning the cross-section classification that allows or not the application of plastic analysis and design for steel structures. It finally presents the types and values of geometrical imperfections provided by the Eurocode and the analysis methods prescribed by the Code as well as alternative proposals of the authors on their selection.

[1]  Ioannis Vayas,et al.  Tragverhalten von Palettenregalsystemen unter Erdbebenbeanspruchung , 2014 .

[2]  S. Timoshenko Theory of Elastic Stability , 1936 .

[3]  Peter F. Adams,et al.  ROTATION CAPACITY OF BEAMS UNDER MOMENT GRADIENT , 1969 .

[4]  Dirk Schäfer,et al.  Toughness requirements for plastic design with structural steel , 2011 .

[5]  M. Fardis,et al.  Designer's guide to EN 1998-1 and en 1998-5 Eurocode 8: Design of structures for earthquake resistance; general rules, seismic actions, design rules for buildings, foundations and retaining structures/ M.Fardis[et al.] , 2005 .

[6]  I. C. Dikaros,et al.  Advanced 3D beam element of arbitrary composite cross section including generalized warping effects , 2015 .

[7]  A. Rusch,et al.  Überprüfung der grenz (b/t)‐Werte für das Verfahren Elastisch‐Plastisch , 2001 .

[8]  Alan R. Kemp Inelastic Local and Lateral Buckling in Design Codes , 1996 .

[9]  Ulrike Kuhlmann,et al.  Definition of flange slenderness limits on the basis of rotation capacity values , 1989 .

[10]  D. A. Nethercot,et al.  Designer's guide to EN 1993-1-1 : Eurocode 3: Design of Steel Structures : General Rules and Rules for Buildings /L. Gardner and D. A. Nethercot , 2005 .

[11]  Ioannis Vayas,et al.  Schlankheitsanforderungen zur Klassifizierung von Trägern aus I-Querschnitten , 1999 .

[12]  Ioannis Vayas,et al.  Design of Steel-Concrete Composite Bridges to Eurocodes , 2013 .

[13]  Bettina Brune Neue Grenzwerte b/t für volles Mittragen von druck‐ und biegebeanspruchten Stahlblechen im plastischen Zustand , 2000 .

[15]  Ioannis Vayas,et al.  Comparative study of wind loading on telecommunication masts according to DIN 4131 and Eurocode 3 , 2010 .

[16]  Alexander Chajes,et al.  Principles of Structural Stability Theory , 1974 .

[17]  V. G. Mokos,et al.  Warping shear stresses in nonuniform torsion by BEM , 2003 .

[18]  Evangelos J. Sapountzakis,et al.  Bars under nonuniform torsion – Application to steel bars, assessment of EC3 guidelines , 2014 .

[19]  I. Vayas Design of Braced Frames , 2000 .

[20]  Maxwell G. Lay Flange Local Buckling in Wide-Flange Shapes , 1965 .

[21]  Gregory J. Hancock,et al.  Plastic bending tests of cold-formed rectangular hollow sections , 1989 .