Temperature-dependent thermal conductivities of non-alloyed and high-alloyed heat-treatable steels in the temperature range between 20 and 500 °C

This work investigates the temperature-dependent thermal conductivity of the heat-treatable steels C45, 40CrMnMo7, and X42Cr13 in a high-tempered condition. The results reveal that the temperature-dependent evolution of the thermal conductivity is strongly influenced by alloying composition. Furthermore, not only the thermal diffusivity but also the specific isobaric heat capacity has a major impact on the resulting thermal conductivity at higher temperatures. The results are discussed with respect to the resulting microstructures and under consideration of Calphad calculations. The results are relevant for the thermal design of tools, particularly those used for high-pressure die casting.

[1]  Christina Berger,et al.  Datensammlung zu Hartstoffeigenschaften , 1997 .

[2]  Albert Fert Ursprung, Entwicklung und Zukunft der Spintronik (Nobel‐Vortrag) , 2008 .

[3]  K. Hellwege,et al.  Einführung in die Festkörperphysik , 1968 .

[4]  J B Patterson,et al.  Measurement of Absolute Water Density, 1 °C to 40 °C , 1994 .

[5]  S. Dudarev,et al.  Magnetic cluster expansion model for high-temperature magnetic properties of iron and iron–chromium alloys , 2011 .

[6]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[7]  Venkanna Fundamentals Of Heat And Mass Transfer , 2010 .

[8]  M. Geiger,et al.  Basic Investigations on the Hot Stamping Steel 22MnB5 , 2005 .

[9]  George Krauss,et al.  Principles of Heat Treatment of Steel , 1980 .

[10]  Zhang,et al.  Effect of solidification cooling rate on the fatigue life of A356.2-T6 cast aluminium alloy , 2000 .

[11]  N. G. Bäcklund An experimental investigation of the electrical and thermal conductivity of iron and some dilute iron alloys at temperatures above 100°K , 1961 .

[12]  Chao Bi,et al.  Pelletization Quality Simulation for Operation Uncertainty of Die-Plate Based on Liquid-Solid-Liquid Coupling Model , 2012 .

[13]  Mehmet Acet,et al.  Constitution and Magnetism of Iron and its Alloys , 2001 .

[14]  A. Paskin,et al.  Analysis of ferromagnetic and antiferro-magnetic second-order transitions , 1956 .

[15]  A. Bjärbo,et al.  Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—an experimental and theoretical study , 2001 .

[16]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[17]  B. Casas,et al.  Benefits from using high thermal conductivity tool steels in the hot forming of steels , 2010 .

[18]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[20]  E. Kaschnitz,et al.  Thermal Diffusivity of the Aluminum Alloy Al–17Si–4Cu (A390) in the Solid and Liquid States , 2007 .

[21]  A. Cezairliyan,et al.  Specific heat of solids , 1988 .

[22]  Janne Wallenius,et al.  Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys , 2006 .

[23]  Wei Xiong,et al.  An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments , 2011 .

[24]  P. Matteis,et al.  Influence of the microstructure on fatigue and fracture toughness properties of large heat-treated mold steels , 2013 .

[25]  Ctirad Uher,et al.  Thermal Conductivity of Metals , 2004 .

[26]  V. Gavriljuk,et al.  On the correlation between electron structure and short range atomic order in iron-based alloys , 2000 .

[27]  A. F. Sirenko,et al.  Thermal expansion of cementite in hypereutectoid iron-carbon alloy , 1997 .

[28]  B. Johansson,et al.  Electronic structure and effective chemical and magnetic exchange interactions in bcc Fe-Cr alloys , 2009 .

[29]  Janez Tušek,et al.  Thermal fatigue of materials for die-casting tooling , 2008 .

[30]  F. Richter,et al.  Die spezifische Wärmekapazität von metallischen Werkstoffen. - II. Teil: Austenitische Stähle , 1984 .

[31]  M. Braun,et al.  Die spezifische Wärme von Eisen, Kobalt und Nickel im Bereich hoher Temperaturen , 1965 .

[32]  A. Ruban,et al.  First-principles based thermodynamic model of phase equilibria in bcc Fe-Cr alloys , 2012 .

[33]  W. Theisen,et al.  The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels , 2013, Journal of Materials Science.

[34]  R. Weiss,et al.  Components of the Thermodynamic Functions of Iron , 1956 .

[35]  Jihui Yang,et al.  Theory of Thermal Conductivity , 2004 .

[36]  Albert Fert,et al.  Two-Current Conduction in Nickel , 1968 .

[37]  G. Apostolopoulos,et al.  Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe–Cr alloys , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  A. Schneider,et al.  Simulation of the kinetics of precipitation reactions in ferritic steels , 2005 .

[39]  E. Maurer Wärmeleitfähigkeit von chromhaltigen Stählen bei hohen Temperaturen , 1936 .

[40]  Lawrence G. Rubin,et al.  Materials at Low Temperatures , 1984 .

[41]  J. G. Hust Thermal Conductivity 17 , 1983 .

[42]  Terry M. Tritt,et al.  Measurement Techniques and Considerations for Determining Thermal Conductivity of Bulk Materials , 2004 .

[43]  Gg. Enke,et al.  Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen. F. Richter. Mitt. aus dem Forschungsinstitut der Mannesmann AG. Stahleisen‐Sonderber. 8 (1973). DIN A 4. 19 Seit. und 13 Abbild. Verlag Stahleisen mbH, Düsseldorf ‐22,– DM , 1974 .