Highly efficient Ru/B4C multifunctional oxygen electrode for rechargeable Li O2 batteries

[1]  L. Nazar,et al.  A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide , 2018, Science.

[2]  Jun Chen,et al.  Mechanistic Evolution of Aprotic Lithium‐Oxygen Batteries , 2017 .

[3]  Ji‐Guang Zhang,et al.  Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy. , 2017, Nature nanotechnology.

[4]  Xin-bo Zhang,et al.  Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium–Oxygen Batteries , 2017, ACS central science.

[5]  Z. Wen,et al.  Local Lattice Distortion Activate Metastable Metal Sulfide as Catalyst with Stable Full Discharge-Charge Capability for Li-O2 Batteries. , 2017, Nano letters.

[6]  J. Xie,et al.  Graphene-like δ-MnO2 decorated with ultrafine CeO2 as a highly efficient catalyst for long-life lithium–oxygen batteries , 2017 .

[7]  Yong‐Mook Kang,et al.  Investigation of Promising Air Electrode for Realizing Ultimate Lithium Oxygen Battery , 2017 .

[8]  Mario Leypold,et al.  Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries , 2017, Nature Energy.

[9]  Ji‐Guang Zhang,et al.  B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries , 2017 .

[10]  Jianming Zheng,et al.  Complete Decomposition of Li2CO3 in Li-O2 Batteries Using Ir/B4C as Noncarbon-Based Oxygen Electrode. , 2017, Nano letters.

[11]  J. Amici,et al.  Influence of Binders and Solvents on Stability of Ru/RuOx Nanoparticles on ITO Nanocrystals as Li-O2 Battery Cathodes. , 2017, ChemSusChem.

[12]  Jinwoo Lee,et al.  Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries. , 2017, ACS nano.

[13]  Yongku Kang,et al.  Hierarchical Ru- and RuO2-foams as high performance electrocatalysts for rechargeable lithium–oxygen batteries , 2016 .

[14]  Weiping Tang,et al.  Study on compositions and changes of SEI film of Li2MnO3 positive material during the cycles , 2016 .

[15]  Lee Johnson,et al.  Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. , 2016, Nature materials.

[16]  Ping He,et al.  Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen , 2016 .

[17]  Wei Shyy,et al.  A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air , 2016 .

[18]  Tao Zhang,et al.  A self-defense redox mediator for efficient lithium–O2 batteries , 2016 .

[19]  Betar M. Gallant,et al.  A Molten Salt Lithium-Oxygen Battery. , 2016, Journal of the American Chemical Society.

[20]  Yan Wang,et al.  Ba0.9Co0.7Fe0.2Nb0.1O3-δ Perovskite as Oxygen Electrode Catalyst for Rechargeable Li-Oxygen Batteries , 2016 .

[21]  Imanol Landa-Medrano,et al.  Carbon-Free Cathodes: A Step Forward in the Development of Stable Lithium-Oxygen Batteries. , 2015, ChemSusChem.

[22]  Tianshou Zhao,et al.  A high-rate and long cycle life solid-state lithium–air battery , 2015 .

[23]  Ji‐Guang Zhang,et al.  In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries. , 2015, ChemSusChem.

[24]  Huakun Liu,et al.  A B4C nanowire and carbon nanotube composite as a novel bifunctional electrocatalyst for high energy lithium oxygen batteries , 2015 .

[25]  G. Cui,et al.  A Carbon‐ and Binder‐Free Nanostructured Cathode for High‐Performance Nonaqueous Li‐O2 Battery , 2015, Advanced science.

[26]  Hee Cheul Choi,et al.  Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery , 2015 .

[27]  Ruigang Zhang,et al.  Intrinsic Barrier to Electrochemically Decompose Li2CO3 and LiOH , 2014 .

[28]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[29]  Wu Xu,et al.  The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries. , 2014, ChemSusChem.

[30]  Dmitri Golberg,et al.  Li‐O2 Battery Based on Highly Efficient Sb‐Doped Tin Oxide Supported Ru Nanoparticles , 2014, Advanced materials.

[31]  Dunwei Wang,et al.  Selective deposition of Ru nanoparticles on TiSi₂ nanonet and its utilization for Li₂O₂ formation and decomposition. , 2014, Journal of the American Chemical Society.

[32]  Dan Sun,et al.  A solution-phase bifunctional catalyst for lithium-oxygen batteries. , 2014, Journal of the American Chemical Society.

[33]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[34]  Tao Zhang,et al.  Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. , 2013, Nano letters.

[35]  Takashi Mori,et al.  Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[36]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[37]  Hun‐Gi Jung,et al.  Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. , 2013, ACS nano.

[38]  Ji‐Guang Zhang,et al.  Effects of Electrolyte Salts on the Performance of Li–O2 Batteries , 2013 .

[39]  Kristina Edström,et al.  Li–O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study , 2013 .

[40]  J. Owen,et al.  A redox shuttle to facilitate oxygen reduction in the lithium air battery , 2013 .

[41]  Jianming Bai,et al.  Electrochemical decomposition of Li2CO3 in NiO–Li2CO3 nanocomposite thin film and powder electrodes , 2012 .

[42]  Ji‐Guang Zhang,et al.  The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries , 2012 .

[43]  Peter Strasser,et al.  Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials , 2012 .

[44]  B. Yi,et al.  Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers , 2008 .

[45]  S. Liao,et al.  High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. , 2006, Journal of the American Chemical Society.