Chaotic behavior in piecewise-linear sampled-data control systems

Abstract This paper discusses the sufficient conditions for chaotic behavior in piecewise-linear sampled-data control systems by applying Shiraiwa-Kurata's theorem. First, it is shown that a discrete-time system with a piecewise-linear element is chaotic if the lower-dimensional system induced from the original system has a snapback repeller. Next, this result is applied to a piecewise-linear sampled-data control system. Finally, the chaotic region for a two-dimensional sampled-data control system with a dead zone element is studied, and two types of transition from a fixed point to a chaotic attractor are studied by numerical simulation.