The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(ρc2). We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to w for a given fixed amount of telescope time. For our survey on the CTIO 4 m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z ≈ 0.5 ± 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in nearly real time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their apparent brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4 m telescope's natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 Type Ia supernovae, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for all of the Type Ia supernovae found by ESSENCE and used in our measurement of w, presented in a companion paper by Wood-Vasey and coworkers.

[1]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[2]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[3]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[4]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[5]  S. Valenti,et al.  Supernova 2002ic: The Collapse of a Stripped-Envelope, Massive Star in a Dense Medium? , 2006, astro-ph/0611125.

[6]  W. M. Wood-Vasey,et al.  Light Curves of Type Ia Supernovae from Near the Time of Explosion , 2006, astro-ph/0608639.

[7]  J. Neill,et al.  The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey , 2006, astro-ph/0607363.

[8]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[9]  Christopher W. Stubbs,et al.  Toward 1% Photometry: End-to-End Calibration of Astronomical Telescopes and Detectors , 2006, astro-ph/0604285.

[10]  J. Prieto,et al.  A New Method to Calibrate the Magnitudes of Type Ia Supernovae at Maximum Light , 2006, astro-ph/0603407.

[11]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[12]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[13]  J. Prieto,et al.  Hubble Space Telescope and Ground-based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications , 2005, astro-ph/0510155.

[14]  M. Stritzinger,et al.  Constraints on the progenitor systems of type Ia supernovae , 2005, astro-ph/0506415.

[15]  Warren R. Brown,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005, astro-ph/0509234.

[16]  Kevin Krisciunas,et al.  Hubble Space Telescope Observations of Nine High-Redshift ESSENCE Supernovae,, , 2005, astro-ph/0508681.

[17]  S. Jha,et al.  Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae , 2005, astro-ph/0508180.

[18]  John L. Tonry,et al.  The NN2 Flux Difference Method for Constructing Variable Object Light Curves , 2005, astro-ph/0507584.

[19]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005, astro-ph/0506583.

[20]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[21]  P. Steinhardt,et al.  Dynamical dark energy: Current constraints and forecasts , 2004, astro-ph/0411803.

[22]  P. Steinhardt,et al.  The Cyclic model simplified , 2004, astro-ph/0404480.

[23]  J. Walsh,et al.  Extracting clean supernova spectra - Towards a quantitative analysis of high-redshift Type Ia supernova spectra , 2004, astro-ph/0410406.

[24]  Ralph C. Bohlin,et al.  Hubble Space Telescope Absolute Spectrophotometry of Vega from the Far-Ultraviolet to the Infrared , 2004 .

[25]  W. M. Wood-Vasey,et al.  Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History , 2004, astro-ph/0406191.

[26]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[27]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[28]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[29]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[30]  P. Steinhardt A quintessential introduction to dark energy , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  W. Turner Colloquium: Measuring and understanding the universe , 2003, astro-ph/0308418.

[32]  S. E. Persson,et al.  An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.

[33]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[34]  I. Hook,et al.  Gemini-north multiobject spectrograph integration, test, and commissioning , 2003, SPIE Astronomical Telescopes + Instrumentation.

[35]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[36]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[37]  M. Thomas,et al.  Optical and Infrared Photometry of the Unusual Type Ia Supernova 2000cx , 2002, astro-ph/0212543.

[38]  T. Padmanabhan Cosmological constant—the weight of the vacuum , 2002, hep-th/0212290.

[39]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[40]  M. Shifman,et al.  Diluting the cosmological constant in infinite volume extra dimensions , 2002, hep-th/0202174.

[41]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[42]  P. Nugent,et al.  K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.

[43]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[44]  Paul J. Steinhardt,et al.  A Cyclic Model of the Universe , 2001, Science.

[45]  J. Weller,et al.  Future supernovae observations as a probe of dark energy , 2001, astro-ph/0106079.

[46]  E. Ofek,et al.  The Unique Type Ia Supernova 2000cx in NGC 524 , 2001, astro-ph/0107318.

[47]  A. S. Fruchter,et al.  Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves , 2001, astro-ph/0104382.

[48]  Rodger I. Thompson,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[49]  A. Riess,et al.  Monte Carlo Simulations of Type Ia Supernova Observations in Supernova Surveys , 2000, astro-ph/0006291.

[50]  S. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[51]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[52]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000, astro-ph/0006305.

[53]  L. Ho,et al.  Detailed Analysis of Early to Late-Time Spectra of Supernova 1993J , 2000, astro-ph/0006264.

[54]  L. Ho,et al.  Optical Spectroscopy of Supernova 1993J During Its First 2500 Days , 2000, astro-ph/0006263.

[55]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[56]  M. Bessell Spectrophotometry: Revised Standards and Techniques , 1999 .

[57]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[58]  N. B. Suntzeff,et al.  Supernova Limits on the Cosmic Equation of State , 1998, astro-ph/9806396.

[59]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[60]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[61]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[62]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[63]  D. Branch,et al.  Extinction and Radial Distribution of Supernova Properties in Their Parent Galaxies , 1997, astro-ph/9711311.

[64]  D. Fabricant,et al.  The FAST Spectrograph for the Tillinghast Telescope , 1998 .

[65]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[66]  E. al.,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1996, astro-ph/9609064.

[67]  R. Schommer,et al.  The Hubble diagram of the Calan/Tololo type IA supernovae and the value of HO , 1996, astro-ph/9609062.

[68]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[69]  A. Renzini Supernovae and Supernova Remnants: Searching for Type Ia Supernova Progenitors , 1996 .

[70]  S. Bergh Supernovae and Supernova Remnants: Supernova Rates , 1996 .

[71]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[72]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[73]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[74]  L. Ho,et al.  The ``Type IIb'' Supernova 1993J in M81: A Close Relative of Type Ib Supernovae , 1993 .

[75]  R. Terlevich,et al.  A Supernova at z = 0.458 and Implications for Measuring theCosmological Deceleration , 1993, astro-ph/9505023.

[76]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[77]  R. C. Smith,et al.  The 1990 calán/tololo supernova search , 1993 .

[78]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[79]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[80]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[81]  R. Weymann,et al.  A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .

[82]  W. Couch,et al.  The discovery of a type Ia supernova at a redshift of 0.31 , 1989, Nature.

[83]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[84]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[85]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[86]  Thomas A. Weaver,et al.  The Physics of Supernova Explosions , 1986 .

[87]  Arlo U. Landolt,et al.  UBVRI PHOTOMETRIC STANDARD STARS AROUND THE CELESTIAL EQUATOR: UPDATES AND ADDITIONS , 2009, 0904.0638.

[88]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[89]  S. Colgate,et al.  EARLY SUPERNOVA LUMINOSITY. , 1969 .

[90]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .