Multiple cross-intersecting families of signed sets

A k-signed r-set on[n]={1,...,n} is an ordered pair (A,f), where A is an r-subset of [n] and f is a function from A to [k]. Families A"1,...,A"p are said to be cross-intersecting if any set in any family A"i intersects any set in any other family A"j. Hilton proved a sharp bound for the sum of sizes of cross-intersecting families of r-subsets of [n]. Our aim is to generalise Hilton's bound to one for families of k-signed r-sets on [n]. The main tool developed is an extension of Katona's cyclic permutation argument.

[1]  Konrad Engel,et al.  An Erdös-Ko-Rado Theorem for Integer Sequences of Given Rank , 1986, Eur. J. Comb..

[2]  G. Katona A theorem of finite sets , 2009 .

[3]  Peter Borg Intersecting and Cross-Intersecting Families of Labeled Sets , 2008, Electron. J. Comb..

[4]  Konrad Engel An Erdös-Ko-Rado theorem for the subcubes of a cube , 1984, Comb..

[5]  Gyula O. H. Katona,et al.  Intersection theorems for systems of finite sets , 1964 .

[6]  J. Spencer Intersection Theorems for Systems of Sets , 1977, Canadian Mathematical Bulletin.

[7]  Zoltán Füredi,et al.  The Erdös-Ko-Rado Theorem for Integer Sequences , 1980, SIAM J. Matrix Anal. Appl..

[8]  László Pyber,et al.  A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.

[9]  Anthony J. W. Hilton An Intersection Theorem for a Collection of Families of Subsets of a Finite Set , 1977 .

[10]  J. C. Meyer Quelques problemes concernant les cliques des hypergraphes h-complets et q-parti h-complets , 1974 .

[11]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[12]  M. L Livingston An Ordered Version of the Erdös-Ko-Rado Theorem , 1979, J. Comb. Theory, Ser. A.

[13]  C. Berge,et al.  Nombres de coloration de l’hypergraphe h-parti complet , 1975 .

[14]  R. Bellman Mathematical optimization techniques , 1964 .

[15]  Peter Frankl,et al.  Erdös–Ko–Rado Theorem—22 Years Later , 1983 .

[16]  David E. Daykin Erdös-Ko-Rado from Kruskal-Katona , 1974, J. Comb. Theory, Ser. A.

[17]  Péter L. Erdös,et al.  A Group-Theoretic Setting for Some Intersecting Sperner Families , 1992, Comb. Probab. Comput..

[18]  Claude Berge Nombres de coloration de l'hypergrapheh-parti complet , 1975 .

[19]  Peter Borg Intersecting Systems of Signed Sets , 2007, Electron. J. Comb..

[20]  Norihide Tokushige,et al.  The exact bound in the Erdös-Ko-Rado theorem for cross-intersecting families , 1989, J. Comb. Theory, Ser. A.

[21]  Norihide Tokushige,et al.  The Erdős–Ko–Rado Theorem for Integer Sequences , 1999, Comb..

[22]  Gyula O. H. Katona A simple proof of the Erd?s-Chao Ko-Rado theorem , 1972 .

[23]  Peter Borg A short proof of a cross-intersection theorem of Hilton , 2009, Discret. Math..

[24]  Hans-Dietrich O. F. Gronau More on the Erdös-Ko-Rado Theorem for Integer Sequences , 1983, J. Comb. Theory, Ser. A.

[25]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..

[26]  B. Bollobás,et al.  An Erdős-Ko-Rado Theorem For Signed Sets , 1997 .

[27]  Aeryung Moon An Analogue of the Erdös-Ko-Rado Theorem for the Hamming Schemes H(n, q) , 1982, J. Comb. Theory, Ser. A.

[28]  Christian Bey An intersection theorem for weighted sets , 2001, Discret. Math..

[29]  Rudolf Ahlswede,et al.  The Diametric Theorem in Hamming Spaces-Optimal Anticodes , 1998 .