Tensor product weight modules over the Virasoro algebra

The tensor product of highest weight modules with intermediate series modules over the Virasoro algebra was discussed by Zhang [A class of representations over the Virasoro algebra, J. Algebra 190 (1997) 1–10]. Since then the irreducibility problem for the tensor products has been open. In this paper, we determine the necessary and sufficient conditions for these tensor products to be simple. From non-simple tensor products, we can get other interesting simple Virasoro modules. We also obtain that any two such tensor products are isomorphic if and only if the corresponding highest weight modules and intermediate series modules are isomorphic, respectively. Our method is to develop a ‘shifting technique’ and to widely use Feigin–Fuchs’ theorem on singular vectors of Verma modules over the Virasoro algebra.

[1]  P. Goddard,et al.  Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .

[2]  G. Radobolja Application of Vertex Algebras to the Structure Theory of Certain Representations Over the Virasoro Algebra , 2013, 1301.0737.

[3]  Z. Jaskólski,et al.  Whittaker pairs for the Virasoro algebra and the Gaiotto - BMT states , 2011, 1112.4453.

[4]  K. Zhao,et al.  A family of simple weight modules over the Virasoro algebra , 2013, 1303.0702.

[5]  C. Dong,et al.  Discrete series of the Virasoro algebra and the moonshine module, In: Algebraic groups and their generalizations: quantum and infinite-dimensional methods , 1994 .

[6]  Emilie Wiesner,et al.  WHITTAKER MODULES FOR THE VIRASORO ALGEBRA , 2008, 0805.2686.

[7]  V. Mazorchuk,et al.  Simple Virasoro modules which are locally finite over a positive part , 2012, 1205.5937.

[8]  V. Kac,et al.  Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras , 1983 .

[9]  Hechun Zhang A Class of Representations over the Virasoro Algebra , 1997 .

[10]  V. Mazorchuk,et al.  Simple Virasoro modules induced from codimension one subalgebras of the positive part , 2012, 1209.1691.

[11]  Xiangqian Guo,et al.  Irreducible modules over the Virasoro algebra , 2011, Documenta Mathematica.

[12]  Z. Kaiming Representations of the Virasoro Algebra, I , 1995 .

[13]  S. Yanagida Whittaker vectors of the Virasoro algebra in terms of Jack symmetric polynomial , 2010, 1003.1049.

[14]  I. Frenkel,et al.  Vertex operator algebras associated to representations of affine and Virasoro Algebras , 1992 .

[15]  V. Kac Contravariant form for infinite-dimensional Lie algebras and superalgebras , 1979 .

[16]  C. Conley,et al.  A Family of Irreducible Representations of the Witt Lie Algebra with Infinite-Dimensional Weight Spaces , 2001, Compositio Mathematica.

[17]  E. Corrigan REPRESENTATIONS OF THE VIRASORO ALGEBRA , 1985 .

[18]  O. Mathieu Classification of Harish-Chandra modules over the Virasoro Lie algebra , 1992 .

[19]  K. Zhao,et al.  Irreducible Virasoro modules from irreducible Weyl modules , 2012, 1209.3746.

[20]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[21]  Xiangqian Guo,et al.  Fraction representations and highest-weight-like representations of the Virasoro algebra , 2013 .

[22]  R. Moody,et al.  Lie Algebras with Triangular Decompositions , 1995 .

[23]  Genqiang Liu,et al.  A class of simple weight Virasoro modules , 2012, 1211.0998.

[24]  M. Schottenloher Representation Theory of the Virasoro Algebra , 2008 .