Quantum fluctuation theorem for error diagnostics in quantum annealers

Near term quantum hardware promises unprecedented computational advantage. Crucial in its development is the characterization and minimization of computational errors. We propose the use of the quantum fluctuation theorem to benchmark the accuracy of quantum annealers. This versatile tool provides simple means to determine whether the quantum dynamics are unital, unitary, and adiabatic, or whether the system is prone to thermal noise. Our proposal is experimentally tested on two generations of the D-Wave machine, which illustrates the sensitivity of the fluctuation theorem to the smallest aberrations from ideal annealing. In addition, for the optimally operating D-Wave machine, our experiment provides the first experimental verification of the integral fluctuation in an interacting, many-body quantum system.

[1]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[2]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[3]  Daniel A. Lidar,et al.  Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.

[4]  Steffi Richter,et al.  Principles and perspectives , 2004, Environmental science and pollution research international.

[5]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[6]  Gernot Schaller,et al.  Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions , 2016, 1610.01829.

[7]  Sebastian Deffner,et al.  Holevo's bound from a general quantum fluctuation theorem , 2012 .

[8]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[9]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[10]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[11]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[12]  Hal Tasaki Jarzynski Relations for Quantum Systems and Some Applications , 2000 .

[13]  Federico Cerisola,et al.  Work measurement as a generalized quantum measurement. , 2014, Physical review letters.

[14]  Jingning Zhang,et al.  Experimental test of the quantum Jarzynski equality with a trapped-ion system , 2014, Nature Physics.

[15]  R. Landauer Information is physical , 1991 .

[16]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[17]  A. Allahverdyan,et al.  Nonequilibrium quantum fluctuations of work. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[19]  C. Jarzynski Diverse phenomena, common themes , 2015, Nature Physics.

[20]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[21]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[22]  P. Hänggi,et al.  Fluctuation theorems: work is not an observable. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jordan M Horowitz,et al.  Nonequilibrium potential and fluctuation theorems for quantum maps. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[25]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[26]  Daniel A. Lidar,et al.  Consistency tests of classical and quantum models for a quantum annealer , 2014, 1403.4228.

[27]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[28]  P. Hänggi,et al.  The other QFT , 2015, Nature Physics.

[29]  Sebastian Deffner,et al.  Thermodynamic universality of quantum Carnot engines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Sebastian Deffner,et al.  Quantum work and the thermodynamic cost of quantum measurements. , 2016, Physical review. E.

[31]  Vlatko Vedral An Information--Theoretic Equality Implying the Jarzynski Relation , 2012 .

[32]  Milad Marvian,et al.  Fluctuation theorems for quantum processes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[35]  B. M. Fulk MATH , 1992 .

[36]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[37]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[38]  Alexey E. Rastegin,et al.  Non-equilibrium equalities with unital quantum channels , 2013, 1301.0855.

[39]  A. Saxena,et al.  Non-hermitian quantum thermodynamics , 2015, Scientific Reports.

[40]  Jordan M. Horowitz,et al.  Thermodynamics with Continuous Information Flow , 2014, 1402.3276.

[41]  Daniel A. Lidar,et al.  Quantum adiabatic Markovian master equations , 2012, 1206.4197.

[42]  A. Chenu,et al.  Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. , 2016, Physical review letters.

[43]  Daniel A. Lidar,et al.  Decoherence in adiabatic quantum computation , 2015, 1503.08767.

[44]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[45]  L. Duan,et al.  Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model. , 2016, Physical review letters.

[46]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[47]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[48]  John M. Martinis,et al.  Qubit metrology for building a fault-tolerant quantum computer , 2015, npj Quantum Information.

[49]  A. B. Boyd,et al.  Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.

[50]  F. Spedalieri,et al.  Reexamination of the evidence for entanglement in a quantum annealer , 2015, 1506.03539.

[51]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[52]  Robert Alicki,et al.  Pure Decoherence in Quantum Systems , 2004, Open Syst. Inf. Dyn..

[53]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[54]  Udo Seifert,et al.  Stochastic thermodynamics: principles and perspectives , 2007, 0710.1187.

[55]  C. Jarzynski,et al.  Quantum-Classical Correspondence Principle for Work Distributions , 2015, 1507.05763.

[56]  I. S. Oliveira,et al.  Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. , 2013, Physical review letters.

[57]  Marek M. Rams,et al.  Quantum neural networks to simulate many-body quantum systems , 2018, Physical Review B.

[58]  Wojciech H. Zurek,et al.  Defects in Quantum Computers , 2017, Scientific Reports.

[59]  C. Jarzynski,et al.  Verification of the quantum nonequilibrium work relation in the presence of decoherence , 2017, 1708.01495.

[60]  Peter Hänggi,et al.  Aspects of quantum work. , 2016, Physical review. E.

[61]  A Quantum Fluctuation Theorem , 2000, cond-mat/0007360.

[62]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[63]  Sebastian Deffner Quantum entropy production in phase space , 2013, 1307.3183.