Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions

White organic light emitting diodes combining the phosphorescent green and orange-red emitting systems fac tris(2-phenylpyridine) iridium doped 4,4′,4″-tris(N-carbazolyl)-triphenylamine (TCTA) and iridium(III)bis(2-methyldibenzo-[f,h]quinoxaline)(acetylacetonate) doped N,N′-di(naphthalen-1-yl)-N,N′-diphenyl-benzidine with the blue fluorescent dye 2,2′,7,7′-tetrakis(2,2-diphenylvinyl)spiro-9,9′-bifluorene (Spiro-DPVBi) are presented. By introducing a thin layer of coevaporated TCTA and 2,2′,2″ (1,3,5-benzenetriyl) tris-[1-phenyl-1H-benzimidazole] between the phosphorescent and the fluorescent region, both singlet and triplet excitons are confined efficiently, whereas charge carriers still pass easily this interlayer. Furthermore, the interlayer suppresses Dexter transfer of the phosphorescent excitons to the nonradiative triplet state of Spiro-DPVBi. Best devices reach a current efficiency of 16.3cd∕A at 100cd∕m2 and a color rendering index of 85 at warm white CIE chromaticity coordinates of (0.47, 0.42). ...

[1]  Stephen R. Forrest,et al.  High operational stability of electrophosphorescent devices , 2002 .

[2]  Fumio Sato,et al.  High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers , 2003 .

[3]  Stephen R. Forrest,et al.  EXCITONIC SINGLET-TRIPLET RATIO IN A SEMICONDUCTING ORGANIC THIN FILM , 1999 .

[4]  Martin Pfeiffer,et al.  Interface electronic structure of organic semiconductors with controlled doping levels , 2001 .

[5]  Stephen R. Forrest,et al.  High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials , 2000 .

[6]  Jan Birnstock,et al.  High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers , 2004 .

[7]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[8]  Advanced materials and formulations for OLED display manufacturing , 2005, SPIE Optics + Photonics.

[9]  Peipei Sun,et al.  New Iridium Complexes as Highly Efficient Orange–Red Emitters in Organic Light‐Emitting Diodes , 2003 .

[10]  Yasuo Tomita,et al.  Highly-bright white organic light-emitting diodes based on a single emission layer , 2002 .

[11]  Dashan Qin,et al.  White organic light-emitting diode comprising of blue fluorescence and red phosphorescence , 2005 .

[12]  Stephen R. Forrest,et al.  Measuring the Efficiency of Organic Light‐Emitting Devices , 2003 .

[13]  Stephen R. Forrest,et al.  White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer , 1999 .

[14]  Stephen R. Forrest,et al.  Electrophosphorescent p–i–n Organic Light‐Emitting Devices for Very‐High‐Efficiency Flat‐Panel Displays , 2002 .

[15]  Stephen R. Forrest,et al.  Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices , 2002 .

[16]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[17]  G. Hughes,et al.  Electron-transporting materials for organic electroluminescent and electrophosphorescent devices , 2005 .

[18]  Shizuo Tokito,et al.  Observation of phosphorescence from tris(8-hydroxyquinoline) aluminum thin films using triplet energy transfer from iridium complexes , 2005 .

[19]  Feng Li,et al.  White organic light-emitting devices using a phosphorescent sensitizer , 2003 .

[20]  Stephen R. Forrest,et al.  Efficient Organic Electrophosphorescent White‐Light‐Emitting Device with a Triple Doped Emissive Layer , 2004 .